Learn More
A general 3-D dynamic model for men's and women's discus flight is presented including precession of spin angular momentum induced by aerodynamic pitching moment. Dependence of pitching moment coefficient on angle of attack alpha is estimated from experiment. Numerical integration of 11 equations of motion for nominal release speed v(0)=25 m/s and axial(More)
Balance recovery techniques are useful not only in preventing falls but also in many sports activities. The step strategy plays an important role especially under intense perturbations. However, relatively little is known about the effect of arm swing on stepping balance recovery although considerable arm motions have been observed. The purpose of this(More)
We present a physics-based approach to generate 3D biped character animation that can react to dynamical environments in real time. Our approach utilizes an inverted pendulum model to online adjust the desired motion trajectory from the input motion capture data. This online adjustment produces a physically plausible motion trajectory adapted to dynamic(More)
The reasons why using the arms can increase standing vertical jump height are investigated by computer simulations. The human models consist of four/five segments connected by frictionless joints. The head-trunk-arms act as a fourth segment in the first model while the arms become a fifth segment in the second model. Planar model movement is actuated by(More)
Incineration is a major treatment process for municipal solid waste in Taiwan. It is estimated that over 1.5 Mt of incinerator ash are produced annually. This study proposes using thermal plasma technology to treat incinerator ash. Sintered glass-ceramics were produced using quenched vitrified slag with colouring agents added. The experimental results(More)
A simple model of standing dives is used to investigate optimal jumping strategies from compliant surfaces and applied to springboard diving. The human model consists of a massless leg actuated by knee torque, and a lumped torso mass centered above the leg. The springboard is modeled as a mass-spring system. Maximum jump height for a male and a female is(More)
The role of arms in compliant-surface jumping for maximizing backward somersault rotations is studied using multi-segment models and is applied to springboard diving. The surface (springboard) is modeled by a rigid bar with a rotational spring with a hinged end and point mass at the tip. Planar four- and five-segment human models are used (with the fifth(More)
The purpose of this study is to characterize the trajectory of a barbell and clarify whether there is a standard pattern in the barbell trajectory for each lifter. Two high-speed cameras (mega-speed MS1000, sampling rate=120 Hz) were used to film the barbell trajectories of male Taiwanese weightlifters under competitive conditions. Twenty-four successful(More)
A multi-segment model is used to investigate optimal compliant-surface jumping strategies and is applied to springboard standing jumps. The human model has four segments representing the feet, shanks, thighs, and trunk-head-arms. A rigid bar with a rotational spring on one end and a point mass on the other end (the tip) models the springboard. Board tip(More)
Motion retargeting can be achieved by direct shape deformation transfer but may be visually unrealistic and physically incorrect. The purpose of this study is to include the consideration of physical properties for more realistic target motion synthesis. After partitioning source and target objects into segments, each segment mass and center of mass (COM)(More)