Kuang He

Learn More
Defects in graphene alter its electrical, chemical, magnetic and mechanical properties. The intentional creation of defects in graphene offers a means for engineering its properties. Techniques such as ion irradiation intentionally induce atomic defects in graphene, for example, divacancies, but these defects are randomly scattered over large distances.(More)
Two distinct configurations of the monovacancy in graphene have been observed using aberration-corrected transmission electron microscopy (AC-TEM) at 80 kV. The predicted lower energy asymmetric monovacancy (MV), exhibiting a Jahn-Teller reconstruction (r-MV), has been observed, but in addition, we have imaged instances of a symmetric monovacancy (s-MV). We(More)
Recent studies have revealed that several Gram-negative species utilize variations of the well-known chemotaxis signaling cascade to switch lifestyles in order to survive environmental stress. The two survival strategies covered in this review are the development of dormant cyst cells and biofilm formation. Each of these structures involves(More)
We show that controlling the introduction time and the amount of sulphur (S) vapour relative to the WO3 precursor during the chemical vapour deposition (CVD) growth of WS2 is critical to achieving large crystal domains on the surface of silicon wafers with a 300 nm oxide layer. We use a two furnace system that enables the S precursor to be separately heated(More)
Extended linear arm chair defects are intentionally fabricated in suspended monolayer graphene using controlled focused electron beam irradiation. The atomic structure is accurately determined using aberration-corrected transmission electron microscopy with monochromation of the electron source to achieve ∼80 pm spatial resolution at an accelerating voltage(More)
Synthetic 2D crystal films grown by chemical vapor deposition are typically polycrystalline, and determining grain size within domains and continuous films is crucial for determining their structure. Here we show that grain boundaries in the 2D transition metal dichalcogenide WS2, grown by CVD, can be preferentially oxidized by controlled heating in air.(More)
A simple method is presented for synthesizing large single crystal graphene domains on melted copper using atmospheric pressure chemical vapor deposition (CVD). This is achieved by performing the reaction above the melting point of copper (1090 °C) and using a molybdenum or tungsten support to prevent balling of the copper from dewetting. By controlling the(More)
Ripples in graphene are an out-of-plane distortion that help stabilize suspended monolayer graphene. The introduction of disclinations and dislocations into the lattice of graphene is predicted to extensively ripple graphene to form "hillocks" to accommodate the strain in the system. Here, we confirm this theoretical prediction by intentionally introducing(More)
Graphene edges and their functionalization influence the electronic and magnetic properties of graphene nanoribbons. Theoretical calculations predict saturating graphene edges with hydrogen lower its energy and form a more stable structure. Despite the importance, experimental investigations of whether graphene edges are always hydrogen-terminated are(More)