H Criss Hartzell18
18H Criss Hartzell
8Di-Yun Ruan
Learn More
The Ca(2+)-activated Cl channel anoctamin-1 (Ano1; Tmem16A) plays a variety of physiological roles, including epithelial fluid secretion. Ano1 is activated by increases in intracellular Ca(2+), but there is uncertainty whether Ca(2+) binds directly to Ano1 or whether phosphorylation or additional Ca(2+)-binding subunits like calmodulin (CaM) are required.(More)
Dendritic spines undergo actin-based growth and shrinkage during synaptic plasticity, in which the actin depolymerizing factor (ADF)/cofilin family of actin-associated proteins are important. Elevated ADF/cofilin activities often lead to reduced spine size and immature spine morphology but can also enhance synaptic potentiation in some cases. Thus,(More)
Ca(2+)-binding protein-1 (CaBP1) and calmodulin (CaM) are highly related Ca(2+)-binding proteins that directly interact with, and yet differentially regulate, voltage-gated Ca(2+) channels. Whereas CaM enhances inactivation of Ca(2+) currents through Ca(v)1.2 (L-type) Ca(2+) channels, CaBP1 completely prevents this process. How CaBP1 and CaM mediate such(More)
Ca(2+)-activated Cl(-) channels (CaCCs) are exceptionally well adapted to subserve diverse physiological roles, from epithelial fluid transport to sensory transduction, because their gating is cooperatively controlled by the interplay between ionotropic and metabotropic signals. A molecular understanding of the dual regulation of CaCCs by voltage and Ca(2+)(More)
Ca(v)1.3 (L-type) voltage-gated Ca2+ channels have emerged as key players controlling Ca2+ signals at excitatory synapses. Compared with the more widely expressed Ca(v)1.2 L-type channel, relatively little is known about the mechanisms that regulate Ca(v)1.3 channels. Here, we describe a new role for the PSD-95 (postsynaptic density-95)/Discs large/ZO-1(More)
Ca(2+)-activated Cl- channels (CaCCs) perform many important functions in cell physiology including secretion of fluids from acinar cells of secretory glands, amplification of olfactory transduction, regulation of cardiac and neuronal excitability, mediation of the fast block to polyspermy in amphibian oocytes, and regulation of vascular tone. Although a(More)
This article reviews the current state of knowledge about the bestrophins, a newly identified family of proteins that can function both as Cl(-) channels and as regulators of voltage-gated Ca(2+) channels. The founding member, human bestrophin-1 (hBest1), was identified as the gene responsible for a dominantly inherited, juvenile-onset form of macular(More)
Mutations in the bestrophin-1 (Best1) gene are linked to several kinds of macular degeneration in both humans and dogs. Although bestrophins have been shown clearly to be Cl(-) ion channels, it is controversial whether Cl(-) channel dysfunction can explain the diseases. It has been suggested that bestrophins are multifunctional proteins: they may regulate(More)
PURPOSE Mutations in the hBest1 (VMD2) gene are linked to various kinds of macular degeneration, including Best vitelliform macular dystrophy (BVMD) and adult-onset vitelliform macular dystrophy (AVMD). The age at onset and severity of disease are quite variable. This study was conducted to examine Cl(-) currents generated by six hBest1 mutations (E119Q,(More)
Human bestrophin-1 (hBest1), which is genetically linked to several kinds of retinopathy and macular degeneration in both humans and dogs, is the founding member of a family of Cl(-) ion channels that are activated by intracellular Ca(2+). At present, the structures and mechanisms responsible for Ca(2+) sensing remain unknown. Here, we have used a(More)