Learn More
We previously reported the first cloning of a functional glycosaminoglycan synthase, the hyaluronan synthase (HAS) from Group A Streptococcus pyogenes (spHAS) (DeAngelis, P. L., Papaconstantinou, J., and Weigel, P. H. (1993) J. Biol. Chem. 268, 19181-19184). Group A spHAS was unrelated to a putative Group C HA synthase reported by others (Lansing, M.,(More)
BACKGROUND Human influenza viruses are known to bind to sialic acid linked alpha2-6 to galactose, but the binding specificity beyond that linkage has not been systematically examined. H3N2 human influenza isolates lost binding to chicken red cells in the 1990s but viruses isolated since 2003 have re-acquired the ability to agglutinate chicken erythrocytes.(More)
We identified two conserved polar amino acids within different membrane domains (MD) of Streptococcus equisimilis hyaluronan synthase (seHAS), Lys48 in MD2 and Glu327 in MD4. In eukaryotic HASs, the position of the Glu is very similar and the Lys is replaced by a conserved polar Gln. To assess whether Lys48 and Glu327 interact or influence seHAS activity,(More)
There is still uncertainty on the correlates of protection by influenza vaccine. To determine the relationship between hemagglutination-inhibition (HI) titer and the specificity and avidity of serum antibodies, we analyzed serum from a longitudinal trial (1983-1987) of influenza vaccine efficacy [Keitel WA, Cate TR, Couch RB, Huggins LL, Hess KR. Efficacy(More)
The membrane-bound hyaluronan synthase (HAS) from Streptococcus equisimilis (seHAS), which is the smallest Class I HAS, has four cysteine residues (positions 226, 262, 281, and 367) that are generally conserved within this family. Although Cys-null seHAS is still active, chemical modification of cysteine residues causes inhibition of wild-type enzyme. Here(More)
The two hyaluronan synthases (HASs) from Streptococcus pyogenes (spHAS) and Streptococcus equisimilis (seHAS) were expressed in Escherichia coli as recombinant proteins containing His6 tails. The accompanying paper has described the purification and lipid dependence of both HASs, their preference for cardiolipin, and their stability during storage(More)
As observed previously in cultured human skin fibroblasts, a decrease of hyaluronan production was also observed in group C Streptococcus equi FM100 cells treated with 4-methylumbelliferone (MU), although there was no effect on their growth. In this study, the inhibition mechanism of hyaluronan synthesis by MU was examined using Streptococcus equi FM100, as(More)
The hemagglutinin (HA) of influenza viruses initiates infection by binding to sialic acid on the cell surface via alpha2,6 (human) or alpha2,3 (avian) linkage. The influenza neuraminidase (NA) can cleave both alpha2,3- and alpha2,6-linked sialic acids, but all influenza NAs have a marked preference for the non-human alpha2,3 linkage. Recent H3N2 influenza(More)
Hyaluronan (HA) synthase (HAS) is a membrane-bound enzyme that utilizes UDP-glucuronic acid (GlcUA) and UDP-GlcNAc to synthesize HA. The HAS from Streptococcus pyogenes (spHAS, 419 amino acids) contains six Cys residues, whereas the enzyme from Streptococcus equisimilis (seHAS, 417 amino acids) contains four Cys residues. These Cys residues of seHAS are(More)
  • 1