Learn More
Plants belonging to the legume family develop nitrogen-fixing root nodules in symbiosis with bacteria commonly known as rhizobia. The legume host encodes all of the functions necessary to build the specialized symbiotic organ, the nodule, but the process is elicited by the bacteria. Molecular communication initiates the interaction, and signals, usually(More)
In legumes, root nodule organogenesis is activated in response to morphogenic lipochitin oligosaccharides that are synthesized by bacteria, commonly known as rhizobia. Successful symbiotic interaction results in the formation of highly specialized organs called root nodules, which provide a unique environment for symbiotic nitrogen fixation. In wild-type(More)
In legumes, Nod-factor signaling by rhizobia initiates the development of the nitrogen-fixing nodule symbiosis, but the direct cell division stimulus that brings about nodule primordia inception in the root cortex remains obscure. We showed that Lotus japonicus plants homozygous for a mutation in the HYPERINFECTED 1 (HIT1) locus exhibit abundant(More)
Most higher plant species can enter a root symbiosis with arbuscular mycorrhizal fungi, in which plant carbon is traded for fungal phosphate. This is an ancient symbiosis, which has been detected in fossils of early land plants. In contrast, the nitrogen-fixing root nodule symbioses of plants with bacteria evolved more recently, and are phylogenetically(More)
Phosphatidylinositol transfer proteins (PITPs) modulate signal transduction pathways and membrane-trafficking functions in eukaryotes. Here, we describe the characterization of a gene family from Lotus japonicus that encodes a novel class of plant PITP-like proteins (LjPLPs) and that is regulated in an unusual nodule-specific manner. Members of this gene(More)
A combined genetic and transcriptome analysis was performed to study the molecular basis of the arbuscular mycorrhiza (AM) symbiosis. By testing the AM phenotype of nodulation-impaired mutants and complementation analysis, we defined seven Lotus japonicus common symbiosis genes (SYMRK, CASTOR, POLLUX, SYM3, SYM6, SYM15, and SYM24) that are required for both(More)
Previous analysis of the Lotus histidine kinase1 (Lhk1) cytokinin receptor gene has shown that it is required and also sufficient for nodule formation in Lotus japonicus. The L. japonicus mutant carrying the loss-of-function lhk1-1 allele is hyperinfected by its symbiotic partner, Mesorhizobium loti, in the initial absence of nodule organogenesis. At a(More)
In Lotus japonicus, seven genetic loci have been identified thus far as components of a common symbiosis (Sym) pathway shared by rhizobia and arbuscular mycorrhizal fungi. We characterized the nup85 mutants (nup85-1, -2, and -3) required for both symbioses and cloned the corresponding gene. When inoculated with Glomus intraradices, the hyphae managed to(More)
Infection thread-dependent invasion of legume roots by rhizobia leads to internalization of bacteria into the plant cells, which is one of the salient features of root nodule symbiosis. We found that two genes, Nap1 (for Nck-associated protein 1) and Pir1 (for 121F-specific p53 inducible RNA), involved in actin rearrangements were essential for infection(More)
Basic helix-loop-helix (bHLH) proteins constitute a large family of transcriptional regulators in plants. Although they have been shown to play important roles in a wide variety of developmental processes, relatively few have been functionally characterized. Here, we describe the map-based cloning of the Lotus japonicus ROOTHAIRLESS1 (LjRHL1) locus.(More)