Learn More
The task of extracting knowledge from databases is quite often performed by machine learning algorithms. The majority of these algorithms can be applied only to data described by discrete numerical or nominal attributes (features). In the case of continuous attributes, there is a need for a discretization algorithm that transforms continuous attributes into(More)
This article addresses the special features of data mining with medical data. Researchers in other fields may not be aware of the particular constraints and difficulties of the privacy-sensitive, heterogeneous, but voluminous data of medicine. Ethical and legal aspects of medical data mining are discussed, including data ownership, fear of lawsuits,(More)
DATA MINING IN FINANCE presents a comprehensive overview of major algorithmic approaches to predictive data mining, including statistical, neural networks, rule-based, decision-tree, and fuzzy-logic methods, and then examines the suitability of these approaches to financial data mining. The book focuses specifically on relational data mining (RDM), which is(More)
Protein structure prediction methods provide accurate results when a homologous protein is predicted, while poorer predictions are obtained in the absence of homologous templates. However, some protein chains that share twilight-zone pairwise identity can form similar folds and thus determining structural similarity without the sequence similarity would be(More)
The paper describes a computerized process of myocardial perfusion diagnosis from cardiac single proton emission computed tomography (SPECT) images using data mining and knowledge discovery approach. We use a six-step knowledge discovery process. A database consisting of 267 cleaned patient SPECT images (about 3000 2D images), accompanied by clinical(More)
The relation between the decision trees generated by a machine learning algorithm and the hidden layers of a neural network is described. A continuous ID3 algorithm is proposed that converts decision trees into hidden layers. The algorithm allows self-generation of a feedforward neural network architecture. In addition, it allows interpretation of the(More)
Most of the existing machine learning algorithms are able to extract knowledge from databases that store discrete attributes (features). If the attributes are continuous, the algorithms can be integrated with a discretization algorithm that transforms them into discrete attributes. The paper describes an algorithm, called CAIM (class-attribute(More)
Management of hyperglycemia in hospitalized patients has a significant bearing on outcome, in terms of both morbidity and mortality. However, there are few national assessments of diabetes care during hospitalization which could serve as a baseline for change. This analysis of a large clinical database (74 million unique encounters corresponding to 17(More)