Krzysztof Józwiak

Learn More
The effect of the (R,S)-ketamine metabolites (R,S)-norketamine, (R,S)-dehydronorketamine, (2S,6S)-hydroxynorketamine and (2R,6R)-hydroxynorketamine on the activity of α7 and α3β4 neuronal nicotinic acetylcholine receptors was investigated using patch-clamp techniques. The data indicated that (R,S)-dehydronorketamine inhibited acetylcholine-evoked currents(More)
Stereoisomers of fenoterol and six fenoterol derivatives have been synthesized and their binding affinities for the beta2 adrenergic receptor (Kibeta2-AR), the subtype selectivity relative to the beta1-AR (Kibeta1-AR/Kibeta2-AR) and their functional activities were determined. Of the 26 compounds synthesized in the study, submicromolar binding affinities(More)
The β₂-adrenergic receptor (β₂-AR) agonist [(3)H]-(R,R')-methoxyfenoterol was employed as the marker ligand in displacement studies measuring the binding affinities (Ki values) of the stereoisomers of a series of 4'-methoxyfenoterol analogs in which the length of the alkyl substituent at α' position was varied from 0 to 3 carbon atoms. The binding(More)
Allosteric, non-competitive inhibitors (NCIs) of neuronal nicotinic acetylcholine receptors (nAChRs) have been shown to produce a wide variety of clinically relevant responses. Many of the observed effects are desired as the nAChR is the therapeutic target, while others are undesired consequences due to off-target binding at the nAChR. Thus, the(More)
The binding thermodynamics of the stereoisomers of fenoterol, (R,R')-, (S,S')-, (R,S')-, and (S,R')-fenoterol, to the beta(2)-adrenergic receptor (beta(2)-AR) have been determined. The experiments utilized membranes obtained from HEK cells stably transfected with cDNA encoding human beta(2)-AR. Competitive displacement studies using [(3)H]CGP-12177 as the(More)
G protein-coupled receptors (GPCRs) are integral membrane proteins that change conformation after ligand binding so that they can transduce signals from an extracellular ligand to a variety of intracellular components. The detailed interaction of a molecule with a G protein-coupled receptor is a complicated process that is influenced by the receptor(More)
Lipophilicity is a physicochemical property of crucial importance in medicinal chemistry. On the molecular level it encodes information on the network of inter- and intramolecular forces affecting drug transport through lipid structures as well as drug's interactions with the target protein. In result, on the organism level, lipophilicity is an important(More)
Astrocytomas and glioblastomas have been particularly difficult to treat and refractory to chemotherapy. However, significant evidence has been presented that demonstrates a decrease in astrocytoma cell proliferation subsequent to an increase in cAMP levels. The 1321N1 astrocytoma cell line, as well as other astrocytomas and glioblastomas, expresses(More)
We compared the interaction of fluoxetine and paroxetine, two selective serotonin reuptake inhibitors (SSRIs), with the human (h) alpha4beta2, alpha3beta4, and alpha7 nicotinic acetylcholine receptors (AChRs) in different conformational states, using Ca(2+) influx, radioligand binding, and molecular docking approaches. The results established that (1)(More)
The computational approach applicable for the molecular dynamics (MD)-based techniques is proposed to predict the ligand-protein binding affinities dependent on the ligand stereochemistry. All possible stereoconfigurations are expressed in terms of one set of force-field parameters [stereoconfiguration-independent potential (SIP)], which allows for(More)