Learn More
BACKGROUND High throughput sequencing has become an important technology for studying expression levels in many types of genomic, and particularly transcriptomic, data. One key way of analysing such data is to look for elements of the data which display particular patterns of differential expression in order to take these forward for further analysis and(More)
Pairing of samples arises naturally in many genomic experiments; for example, gene expression in tumour and normal tissue from the same patients. Methods for analysing high-throughput sequencing data from such experiments are required to identify differential expression, both within paired samples and between pairs under different experimental conditions.(More)
Mechanisms of gene regulation are poorly understood in Apicomplexa, a phylum that encompasses deadly human pathogens like Plasmodium and Toxoplasma. Initial studies suggest that epigenetic phenomena, including histone modifications and chromatin remodeling, have a profound effect upon gene expression and expression of virulence traits. Using the model(More)
  • Nataliya E. Yelina, Kyuha Choi, Liudmila Chelysheva, Malcolm Macaulay, Bastiaan de Snoo, Erik Wijnker +7 others
  • 2012
Meiosis is a specialized eukaryotic cell division that generates haploid gametes required for sexual reproduction. During meiosis, homologous chromosomes pair and undergo reciprocal genetic exchange, termed crossover (CO). Meiotic CO frequency varies along the physical length of chromosomes and is determined by hierarchical mechanisms, including epigenetic(More)
In fungi and mammals, the majority of meiotic recombination occurs in narrow (1–2 kb) hot spots 1–3. Human and mouse hot spots are targeted to DNA sequence motifs by the zinc finger domain protein PRDM9 (refs. 4–11). PRDM9-dependent crossovers occur mainly in intergenic regions and introns, with the lowest amount of recombination occurring in exons 9,12.(More)
Toxoplasma gondii is a globally distributed protozoan parasite that can infect virtually all warm-blooded animals and humans. Despite the existence of a sexual phase in the life cycle, T. gondii has an unusual population structure dominated by three clonal lineages that predominate in North America and Europe, (Types I, II, and III). These lineages were(More)
PRDM9 directs human meiotic crossover hot spots to intergenic sequence motifs, whereas budding yeast hot spots overlap regions of low nucleosome density (LND) in gene promoters. To investigate hot spots in plants, which lack PRDM9, we used coalescent analysis of genetic variation in Arabidopsis thaliana. Crossovers increased toward gene promoters and(More)
We recently identified approximately 1400 conserved non-coding elements (CNEs) shared by the genomes of fugu (Takifugu rubripes) and human that appear to be associated with developmental regulation in vertebrates [Woolfe, A., Goodson, M., Goode, D.K., Snell, P., McEwen, G.K., Vavouri, T., Smith, S.F., North, P., Callaway, H., Kelly, K., Walter, K.,(More)
During meiosis, reciprocal exchange between homologous chromosomes occurs as a result of crossovers (COs). CO frequency varies within genomes and is subject to genetic, epigenetic and environmental control. As robust measurement of COs is limited by their low numbers, typically 1-2 per chromosome, we adapted flow cytometry for use with Arabidopsis(More)
During meiosis homologous chromosomes undergo crossover recombination. Sequence differences between homologs can locally inhibit crossovers. Despite this, nucleotide diversity and population-scaled recombination are positively correlated in eukaryote genomes. To investigate interactions between heterozygosity and recombination we crossed Arabidopsis lines(More)