Learn More
Plakoglobin is the only component common to both the desmosomal plaque and the cadherin-catenin cell adhesion complex in the adherens junction. It is highly homologous to vertebrate beta-catenin and to Drosophila armadillo protein and may-like these proteins-be also involved in signaling pathways. To analyze the role of plakoglobin during mouse development(More)
Previous studies have shown that Oct4 has an essential role in maintaining pluripotency of cells of the inner cell mass (ICM) and embryonic stem cells. However, Oct4 null homozygous embryos die around the time of implantation, thus precluding further analysis of gene function during development. We have used the conditional Cre/loxP gene targeting strategy(More)
Somatic cell clones often fail at a developmental stage coincident with commencement of differentiation. The transcription factor Oct4 is expressed during cleavage stages and is essential for the differentiation of the blastocyst. Oct4 expression becomes restricted to the inner cell mass and epiblast. After gastrulation Oct4 is active only in germ cells and(More)
Abnormal gene expression patterns in somatic cell clones and their attrition in utero are commonly considered a consequence of errors in nuclear reprogramming. We observe that mouse clone blastocysts have less than half the normal cell number, and that higher cell number correlates with correct expression of Oct4, a gene essential for peri-implantation(More)
During meiosis, the arrangement of homologous chromosomes is tightly regulated by the synaptonemal complex (SC). Each SC consists of two axial/lateral elements (AEs/LEs), and numerous transverse filaments. SC protein 2 (SYCP2) and SYCP3 are integral components of AEs/LEs in mammals. We find that SYCP2 forms heterodimers with SYCP3 both in vitro and in vivo.(More)
Males heterozygous for the t-haplotype form of mouse chromosome 17 preferentially transmit the t-chromosome to their progeny. Several distorter/sterility loci carried on the t-haplotype together impair flagellar function in all spermatozoa whereas the responder, Tcr, rescues t-sperm but not wild-type sperm. Thus, t-sperm have an advantage over wild-type(More)
The POU-domain transcription factor Pou5f1 (Oct4) is restricted to pluripotent embryonic cells and the germ line of the mouse and is required for the maintenance of pluripotency of cells within the inner cell mass of the mouse blastocyst. Despite highly conserved genomic organization and regulatory regions between the mouse Oct4 gene and its bovine(More)
Piwi-interacting RNAs (piRNAs) are essential for silencing of transposable elements in the germline, but their biogenesis is poorly understood. Here we demonstrate that MOV10L1, a germ cell-specific putative RNA helicase, is associated with Piwi proteins. Genetic disruption of the MOV10L1 RNA helicase domain in mice renders both MILI and MIWI2 devoid of(More)
Imprinted genomic regions have been defined by the production of mice with uniparental inheritance or duplication of homologous chromosome regions. With most of the genome investigated, paternal duplication of only distal chromosomes 7 and 12 results in the lack of offspring, and prenatal lethality is presumed. Aberrant expression of imprinted genes in(More)
Nicotinamide adenine dinucleotides have emerged as key signals of the cellular redox state. Yet the structural basis for allosteric gene regulation by the ratio of reduced NADH to oxidized NAD(+) is poorly understood. A key sensor among Gram-positive bacteria, Rex represses alternative respiratory gene expression until a limited oxygen supply elevates the(More)