Krystian Mikolajczyk

Learn More
In this paper, we compare the performance of descriptors computed for local interest regions, as, for example, extracted by the Harris-Affine detector [Mikolajczyk, K and Schmid, C, 2004]. Many different descriptors have been proposed in the literature. It is unclear which descriptors are more appropriate and how their performance depends on the interest(More)
In this paper we propose a novel approach for detecting interest points invariant to scale and affine transformations. Our scale and affine invariant detectors are based on the following recent results: (1) Interest points extracted with the Harris detector can be adapted to affine transformations and give repeatable results (geometrically stable). (2) The(More)
The paper gives a snapshot of the state of the art in affine covariant region detectors, and compares their performance on a set of test images under varying imaging conditions. Six types of detectors are included: detectors based on affine normalization around Harris  (Mikolajczyk and  Schmid, 2002; Schaffalitzky and  Zisserman, 2002) and Hessian points (More)
This paper shows that the performance of a binary classifier can be significantly improved by the processing of structured unlabeled data, i.e. data are structured if knowing the label of one example restricts the labeling of the others. We propose a novel paradigm for training a binary classifier from labeled and unlabeled examples that we call P-N(More)
This paper investigates long-term tracking of unknown objects in a video stream. The object is defined by its location and extent in a single frame. In every frame that follows, the task is to determine the object's location and extent or indicate that the object is not present. We propose a novel tracking framework (TLD) that explicitly decomposes the(More)
This paper proposes a novel method for tracking failure detection. The detection is based on the ForwardBackward error, i.e. the tracking is performed forward and backward in time and the discrepancies between these two trajectories are measured. We demonstrate that the proposed error enables reliable detection of tracking failures and selection of reliable(More)
Human detection based on a probabilistic assembly of robust part detectors. HAL is a multidisciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.(More)
In this paper, we compare the performance of descriptors computed for local interest regions, as, for example, extracted by the Harris-Affine detector. Many different descriptors have been proposed in the literature. It is unclear which descriptors are more appropriate and how their performance depends on the interest region detector. The descriptors should(More)