Krystian Kubica

Learn More
Experiments show significant effects of an electric field on lipid membrane, leading to a pore formation when a high intensity field is applied. The phenomenon of electroporation is preceded by the induction and expansion of defects, responsible for the pre-pore excitation. We examine the mechanism of the induction of the field-driven defects by Monte Carlo(More)
The degree of dependence of a lipid bilayer's surface properties on its conformational state is still an unresolved question. Surface properties are functions of molecular organization in the complex interfacial region. In the past, they were frequently measured using fluorescence spectroscopy. Since a fluorescent probe provides information on its local(More)
Models of lipid bilayer were extended and dipole structure of polar head in lipid molecules was included. As a result a wavy structure, resembling experimentally observed 'ripple phase', was obtained. The discussion on significance of interactions between dipoles that constitute polar part of the model membrane is presented. Assumptions of the model are(More)
Ripple phase modelling was achievable by taking into consideration the dipole structure of the polar heads of model membrane molecules. Computer simulations enabled the selective analysis of a model membrane. Considering only the hydrophobic part of the lipid membrane, the gel-fluid transition stage can be obtained in such a simulation. Assuming an(More)
Membrane electroporation seems to be a useful method for delivery of biological active compounds into the cell. Although it is known that this phenomenon is sensitive to the electric field intensity, duration of the electric pulse and its shape, it is not fully understood. In some theoretical descriptions it is postulated that a hydrophobic pore appears at(More)
Cholesterol plays a vital role in human body. Its unbalanced homeostasis, however, leads to health related problems. The elevated blood cholesterol levels are now considered a classic coronary risk factor and are suspected to lead to coronary artery diseases, causing 2.6 millions of deaths each year. Here, we develop a two-compartment mathematical model to(More)
By taking into consideration the dipole structure of the polar heads of model membrane molecules, ripple phase modelling was achievable. Computer simulations enabled the selective analysis of a model membrane. Considering only the hydrophobic part of the lipid membrane, the gel-fluid transition stage can be obtained in such a simulation. Assuming an(More)
  • 1