Kritika Pershad

Learn More
Mapping protein interactions by immunoprecipitation is limited by the availability of antibodies recognizing available native epitopes within protein complexes with sufficient affinity. Here we demonstrate a scalable approach for generation of such antibodies using phage display and affinity maturation. We combined antibody variable heavy (V(H)) genes from(More)
To demonstrate the utility of phage display in generating highly specific antibodies, affinity selections were conducted on 20 related Src Homology 2 (SH2) domains (ABL1, ABL2, BTK, BCAR3, CRK, FYN, GRB2, GRAP2, LYN, LCK, NCK1, PTPN11 C, PIK3R1 C, PLCgamma1 C, RASA1 C, SHC1, SH2D1A, SYK N, VAV1 and the tandem domains of ZAP70). The domains were expressed in(More)
Affinity reagents that are generated by phage display are typically subcloned into an expression vector for further biochemical characterization. This insert transfer process is time consuming and laborious especially if many inserts are to be subcloned. To simplify the transfer process, we have constructed a "drop-out" phagemid vector that can be rapidly(More)
While affinity reagents are valuable tools for monitoring protein phosphorylation and studying signaling events in cells, generating them through immunization of animals with phosphopeptides is expensive, laborious, and time-consuming. An attractive alternative is to use protein evolution techniques and isolate new anti-phosphopeptide binding specificities(More)
Phosphorylation is an important post-translational event that has a wide array of functional consequences. With advances in the ability of various technologies in revealing and mapping new phosphosites in proteins, it is equally important to develop affinity reagents that can monitor such post-translational modifications in eukaryotic cells. While(More)
Often in protein design research, one desires to generate thermally stable variants of a protein or domain. One route to identifying mutations that yield domains that remain folded and active at a higher temperature is through the use of directed evolution. A library of protein domain variants can be generated by mutagenic PCR, expressed on the surface of(More)
  • 1