Learn More
On-chip caches represent a sizable fraction of the total power consumption of microprocessors. Although large caches can significantly improve performance, they have the potential to increase power consumption. As feature sizes shrink, the dominant component of this power loss will be leakage. However, during a fixed period of time the activity in a cache(More)
Dynamic voltage scaling (DVS) reduces the power consumption of processors when peak performance is unnecessary. However, the achievable power savings by DVS alone is becoming limited as leakage power increases. In this paper, we show how the simultaneous use of adaptive body biasing (ABB) and DVS can be used to reduce power in high-performance processors.(More)
In this paper, we present the implementation and silicon measurements results of a 64bit processor fabricated in 0.18µm technology. The processor employs a delay-error detection and correction scheme called Razor to eliminate voltage safety margins and scale voltage 120mV below the first failure point. It achieves 44% energy savings over the worst case(More)
The physical layer of most wireless protocols is traditionally implemented in custom hardware to satisfy the heavy computational requirements while keeping power consumption to a minimum. These implementations are time consuming to design and difficult to verify. A programmable hardware platform capable of supporting software implementations of the physical(More)
Dynamic voltage scaling (DVS) is a popular approach for energy reduction of integrated circuits. Current processors that use DVS typically have an operating voltage range from full to half of the maximum Vdd. However, it is possible to construct designs that operate over a much larger voltage range: from full Vdd to subthreshold voltages. This possibility(More)
On-chip caches represent a sizeable fraction of the total power consumption of microprocessors. Although large caches can significantly improve performance, they have the potential to increase power consumption. As feature sizes shrink, the dominant component of this power loss will be leakage. In our previous work we have shown how the drowsy circuit---a(More)
In the past decade, the proliferation of mobile devices has increased at a spectacular rate. There are now more than 3.3 billion active cell phones in the world-a device that we now all depend on in our daily lives. The current generation of devices employs a combination of general-purpose processors, digital signal processors, and hardwired accelerators to(More)