Kristopher W. Kolewe

Learn More
Hydration is central to mitigating surface fouling by oil and microorganisms. Immobilization of hydrophilic polymers on surfaces promotes retention of water and a reduction of direct interactions with potential foulants. While conventional surface modification techniques are surface-specific, mussel-inspired adhesives based on dopamine effectively coat many(More)
Clinically, biofilm-associated infections commonly form on intravascular catheters and other hydrogel surfaces. The overuse of antibiotics to treat these infections has led to the spread of antibiotic resistance and underscores the importance of developing alternative strategies that delay the onset of biofilm formation. Previously, it has been reported(More)
In this study, we exploit the excellent fouling resistance of polymer zwitterions and present electrospun nanofiber mats surface functionalized with poly(2-methacryloyloxyethyl phosphorylcholine) (polyMPC). This zwitterionic polymer coating maximizes the accessibility of the zwitterion to effectively limit biofouling on nanofiber membranes. Two facile,(More)
Microfluidic strategies to enable the growth and subsequent serial crystallographic analysis of micro-crystals have the potential to facilitate both structural characterization and dynamic structural studies of protein targets that have been resistant to single-crystal strategies. However, adapting microfluidic crystallization platforms for(More)
Bacterial biofilms are highly tolerant to antimicrobials and play an important role in the development and spread of antibiotic resistance based on horizontal gene transfer due to close cell-to-cell contact. As an important surface property, topography has been shown to affect bacterial adhesion and biofilm formation. Here, we demonstrate that(More)
Numerous engineered and natural environments suffer deleterious effects from biofouling and/or biofilm formation. For instance, bacterial contamination on biomedical devices pose serious health concerns. In membrane-based technologies, such as desalination and wastewater reuse, biofouling decreases membrane lifetime, and increases the energy required to(More)
Clinically, biofilm-associated infections commonly form on intravascular catheters and other hydrogel surfaces. For example, annually in the United States, biofilms formed on intravascular catheters are linked to 250,000 blood stream infections with an associated mortality rate of 1225%. To inactivate microbes, antibacterial agents have been released from(More)
The fabrication and advanced function of large area biomimetic superhydrophobic surfaces (SHS) and slippery lubricant-infused porous surfaces (SLIPS) are reported. The use of roll-to-roll nanoimprinting techniques enabled the continuous fabrication of SHS and SLIPS based on hierarchically wrinkled surfaces. Perfluoropolyether hybrid molds were used as(More)
In this study, we have fabricated robust patterned surfaces that contain biocompatible and antifouling stripes, which cause microorganisms to consolidate into bare silicon spaces. Copolymers of methacryloyloxyethyl phosphorylcholine (MPC) and a methacrylate-substituted dihydrolipoic acid (DHLA) were spin-coated onto silicon substrates. The MPC units(More)
  • 1