Learn More
Neurofibromatosis type 1 (NF1) is an autosomal dominant disorder characterized by increased incidence of benign and malignant tumors of neural crest origin. Mutations that activate the protooncogene ras, such as loss of Nf1, cooperate with inactivating mutations at the p53 tumor suppressor gene during malignant transformation. One hundred percent of mice(More)
Neurotrophin 3 (NT-3) is one of four related polypeptide growth factors that share structural and functional homology to nerve growth factor (NGF). NT-3 and its receptor, called neurotrophic tyrosine kinase receptor type 3 (Ntrk3; also called TrkC), are expressed early and throughout embryogenesis. We have inactivated the NT-3 gene in embryonic stem (ES)(More)
We have used electrophysiological, pharmacological and immunological techniques to determine which classes of metabotropic glutamate receptors exist on cone horizontal cells in the catfish retina. Patch-clamp recordings in acutely dissociated cone horizontal cells provide evidence that group I and III metabotropic glutamate receptors exist, and are linked(More)
Mutations at the neurofibromatosis 1 (NF1) locus in humans and mice result in abnormal growth of neural crest-derived cells, including melanocytes and Schwann cells. We have exploited a targeted disruption of the NF1 gene in mice to examine the role of neurofibromin in the acquisition of neurotrophin dependence in embryonic neurons. We show that both neural(More)
The neurofibromatosis (NF1) gene shows significant homology to mammalian GAP and is an important regulator of the ras signal transduction pathway. To study the function of NF1 in normal development and to try and develop a mouse model of NF1 disease, we have used gene targeting in ES cells to generate mice carrying a null mutation at the mouse Nf1 locus.(More)
We have studied the early development of chicken embryo sensory neurons in culture before they become dependent on neurotrophic factors for survival. During this period, they undergo a distinct change in morphology:initially they have small, spindle-shaped, phase-dark cell bodies, which become spherical and phase bright and extend long neurites. Although(More)
Cells of the sympathoadrenal lineage, including sympathetic neurons, adrenal chromaffin cells (pheochromocytes), and small intensely fluorescent (SIF) cells, arise from the neural crest. We have used antisera against catecholamine biosynthesis enzymes in conjunction with the monoclonal antibody A2B5 and an antiserum against the 160-kDa neurofilament (NF)(More)
Benign neurofibromas and malignant peripheral nerve sheath tumors are serious complications of neurofibromatosis type 1. The epidermal growth factor receptor is not expressed by normal Schwann cells, yet is overexpressed in subpopulations of Nf1 mutant Schwann cells. We evaluated the role of EGFR in Schwann cell tumorigenesis. Expression of EGFR in(More)
The neural crest-derived precursors of the sympathoadrenal lineage depend on environmental cues to differentiate as sympathetic neurons and pheochromocytes. We have used the monoclonal antibody A2B5 as a marker for neuronal differentiation and antisera against catecholamine synthesis enzymes to investigate the differentiation of catecholaminergic cells in(More)
Neural crest cells of vertebrate embryos disperse on distinct pathways and produce different derivatives in specific embryonic locations. In the trunk of avian embryos, crest-derived cells that initially migrate on the lateral pathway, between epidermal ectoderm and somite, produce melanocytes but no neuronal derivatives. Although we found that melanocyte(More)