Learn More
BACKGROUND T cells in the thymus undergo opposing positive and negative selection processes so that the only T cells entering circulation are those bearing a T cell receptor (TCR) with a low affinity for self. The mechanism differentiating negative from positive selection is poorly understood, despite the fact that inherited defects in negative selection(More)
Senescence, the molecular program that limits the finite proliferative potential of a cell, acts as an important barrier to protect the body from cancer. Techniques for measuring transcriptome changes and for modulating their expression suggest that it may be possible to dissect the transcriptional networks underlying complex cellular processes. HMF3A cells(More)
BACKGROUND Specific chromatin characteristics, especially the modification status of the core histone proteins, are associated with active and inactive genes. There is growing evidence that genes that respond to environmental or developmental signals may possess distinct chromatin marks. Using a T cell model and both genome-wide and gene-focused approaches,(More)
We recently provided the first description of a nuclear mechanism used by Protein Kinase C-theta (PKC-θ) to mediate T cell gene expression. In this mode, PKC-θ tethers to chromatin to form an active nuclear complex by interacting with proteins including RNA polymerase II, the histone kinase MSK-1, the demethylase LSD1, and the adaptor molecule 14-3-3ζ at(More)
The protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA) induces transition of the epithelial MCF-7 cell line to a mesenchymal phenotype. A subset of the resulting mesenchymal cells has surface markers characteristics of a cancer stem cell (CSC) population. We profiled the transcriptome changes associated with the epithelial to mesenchymal(More)
Immunological memory is the ability of the immune system to respond more rapidly and effectively to previously encountered pathogens, a key feature of adaptive immunity. The capacity of memory T cells to “remember” previous cellular responses to specific antigens ultimately resides in their unique patterns of gene expression. Following re-exposure to an(More)
It is well established that the NF-␬B family of transcription factors serves a major role in controlling gene expression in response to T cell activation, but the genome-wide roles of individual family members remain to be determined. c-Rel, a member of the NF-␬B family, appears to play a specific role in T cell function because T cells from c-Rel ؊/؊(More)
T cell activation involves the recognition of a foreign antigen complexed to the major histocompatibility complex on the antigen presenting T cell to the T cell receptor. This leads to activation of signaling pathways, which ultimately leads to induction of key cytokine genes responsible for eradication of foreign antigens. We used the mouse EL4 T cell as a(More)
Interleukins are a group of cytokines with complex immunomodulatory functions that are important for regulating immunity in vertebrate species. Reptiles and mammals last shared a common ancestor more than 350 million years ago, so it is not surprising that low sequence identity has prevented divergent interleukin genes from being identified in the central(More)
Epithelial-to-mesenchymal transition (EMT) is physiological in embryogenesis and wound healing but also associated with the formation of cancer stem cells (CSCs). Many EMT signaling pathways are implicated in CSC formation, but the precise underlying mechanisms of CSC formation remain elusive. We have previously demonstrated that PKC is critical for EMT(More)