Kristina Nehlsen

Learn More
BACKGROUND Recombinant protein expression in mammalian cells is mostly achieved by stable integration of transgenes into the chromosomal DNA of established cell lines. The chromosomal surroundings have strong influences on the expression of transgenes. The exploitation of defined loci by targeting expression constructs with different regulatory elements is(More)
Long-term, recombinant gene expression in mammalian cells depends on the nature of the transgene integration site and its inherent properties to modulate transcription (epigenetic effects). Here we describe a method by which high transgene expression is achieved and stabilized in extensively proliferating cultures. The method is based on strict(More)
The strength of recombinant gene expression is a key property of cell lines for biopharmaceutical protein production. In most stable cell lines the expression vector is stably introduced into the host chromosomal DNA. Apart from the copy number and the used expression control elements the performance of recombinant expression vectors is modulated by genetic(More)
Eukaryotic DNA is organized into chromatin domains that regulate gene expression and chromosome behavior. Insulators and/or scaffold-matrix attachment regions (S/MARs) mark the boundaries of these chromatin domains where they delimit enhancing and silencing effects from the outside. By recombinase-mediated cassette exchange (RMCE), we were able to compare(More)
Currently used vectors in human gene therapy suffer from a number of limitations with respect to safety and reproducibility. There is increasing agreement that the ideal vector for gene therapy should be completely based on chromosomal elements and behave as an independent functional unit after integration into the genome or when retained as an episome. In(More)
  • 1