Kristina M. Hufford

Learn More
Given the enormous number and high mortality of fertilized ovules in plants, it is possible that selection during the earliest stages of the life cycle plays an important role in shaping the genetic composition of plant populations. Previous research involving selection component analyses found strong evidence for viability selection in annual plant(More)
The domestication of maize (Zea mays sp. mays) from its wild progenitors represents an opportunity to investigate the timing and genetic basis of morphological divergence resulting from artificial selection on target genes. We compared sequence diversity of 30 candidate selected and 15 reference loci between the three populations of wild teosintes, maize(More)
The benefits of composite rather than local seed provenances for ecological restoration have recently been argued, largely on the basis of maximizing evolutionary potential. However, these arguments have downplayed the potentially negative consequences of outbreeding depression once mixed provenances interbreed. In this study, we compared intraspecific F1(More)
We describe the sequences of six primer pairs for the PCR amplification of nuclear microsatellite markers in the tree shrews, Tupaia glis and T. belangeri. Multilocus genotyping based on non-destructive DNA sampling of live-trapped animals reveals high allelic variability (A) and heterozygosity (He) at these loci. Such characteristics make these genetic(More)
Local, wild-collected seeds of native plants are recommended for use in ecological restoration to maintain patterns of adaptive variation. However, some environments are so drastically altered by exotic, invasive weeds that original environmental conditions may no longer exist. Under these circumstances, cultivated varieties selected for improved(More)
When landscapes are heavily impacted by biological invasion, local populations of native plant species may no longer be adapted to altered environmental conditions. In these cases, it is useful to investigate alternative sources of germplasm, such as cultivated varieties, for planting at restoration sites. This study compared cultivated and wild (local)(More)
Efforts to re-establish native plant species should consider intraspecific variation if we are to restore genetic diversity and evolutionary potential. Data describing spatial genetic structure and the scale of adaptive differentiation are needed for restoration seed sourcing. Genetically defined provenance zones provide species-specific guidelines for the(More)
Genetic marker studies can assist restoration practice through selection of seed sources that conserve historical levels of gene diversity and population genetic differentiation. We examined genetic variation and structure within and among mainland and island populations of Elymus glaucus, a perennial bunchgrass species native to western North American(More)
  • 1