Kristina Arvidson

Learn More
This invited review covers research areas of central importance for orthopaedic and maxillofacial bone tissue repair, including normal fracture healing and healing problems, biomaterial scaffolds for tissue engineering, mesenchymal and foetal stem cells, effects of sex steroids on mesenchymal stem cells, use of platelet-rich plasma for tissue repair,(More)
In the complex process of bone formation at the implant-tissue interface, implant surface roughness is an important factor modulating osteoblastic function. In this study, primary cultures of osteoblast-like cells, derived from human mandibular bone, were used. The aim was to examine the effect of varying surface roughness of titanium implant material on(More)
As different implant abutments are introduced to obtain a sufficient soft tissue barrier, the aim of this study was to determine the effect of three different surface modifications of densely sintered high-purity aluminium oxide on morphology, attachment and proliferation of human gingival fibroblasts. Fibroblasts were cultured on pressed aluminium oxide,(More)
BACKGROUND Improved understanding of the interactions between bone cells and endothelial cells involved in osteogenesis should aid the development of new strategies for bone tissue engineering. The aim of the present study was to determine whether direct communication between bone marrow stromal cells (MSC) and human umbilical vein endothelial cells (EC)(More)
Degradation characteristics in response to electron beam sterilization of designed and biodegradable aliphatic polyester scaffolds are relevant for clinically successful synthetic graft tissue regeneration. Scaffold degradation in vitro and in vivo were documented and correlated to the macroscopic structure and chemical design of the original polymer. The(More)
This study was performed to determine the effect of commercially pure titanium surfaces blasted with TiO2 particles on the biological responses of cells derived from human mandibular bone. The morphology and attachment of those cells were investigated on turned titanium surfaces (control) and surfaces blasted with 45 microns (standard), 45-63 microns, and(More)
In tissue engineering, the resorbable aliphatic polyester poly(L-lactide) (PLLA) is used as scaffolds in bone regeneration. Copolymers of poly(L-lactide)-co-(epsilon-caprolactone) [poly(LLA-co-CL)] and poly(L-lactide)-co-(1,5-dioxepan-2-one) [poly(LLA-co-DXO)], with superior mechanical properties to PLLA, have been developed to be used as scaffolds, but the(More)
OBJECTIVES This prospective multicentre study provides clinical experience up to 3 years to support a simplified treatment for mandibular edentulism within 1 week by using one-stage implant surgery and a screw-retained full-arch bridge. METHODS Two hundred and fifty ITI Monotype implants were installed in 62 patients out of 66 patients; 60 patients got(More)
A fundamental component of bone tissue engineering is an appropriate scaffold as a carrier for osteogenic cells. The aim of the study was to evaluate the response of human bone marrow stromal cells (BMSC) to scaffolds made of three biodegradable polymers: poly(L-lactide-co-ε-caprolactone) (poly(LLA-co-CL)), poly(L-lactide-co-1,5dioxepan-2-one)(More)
Optical tweezers were used to study the interaction and attachment of human bone cells to various types of medical implant materials. Ideally, the implant should facilitate cell attachment and promote migration of the progenitor cells in order to decrease the healing time. It is therefore of interest, in a controlled manner, to be able to monitor the cell(More)