Kristin R. Swanson

Learn More
We have extended a mathematical model of gliomas based on proliferation and diffusion rates to incorporate the effects of augmented cell motility in white matter as compared to grey matter. Using a detailed mapping of the white and grey matter in the brain developed for a MRI simulator, we have been able to simulate model tumours on an anatomically accurate(More)
A recent computational model of brain tumor growth, developed to better describe how gliomas invade through the adjacent brain parenchyma, is based on two major elements: cell proliferation and isotropic cell diffusion. On the basis of this model, glioma growth has been simulated in a virtual brain, provided by a 3D segmented MRI atlas. However, it is(More)
Gliomas are brain tumours that differ from most other cancers by their diffuse invasion of the surrounding normal tissue and their notorious recurrence following all forms of therapy. We have developed a mathematical model to quantify the spatio-temporal growth and invasion of gliomas in three dimensions throughout a virtual human brain. The model(More)
Glioblastoma multiforme (GBM) is the most malignant form of primary brain tumors known as gliomas. They proliferate and invade extensively and yield short life expectancies despite aggressive treatment. Response to treatment is usually measured in terms of the survival of groups of patients treated similarly, but this statistical approach misses the(More)
Over the last 10 years increasingly complex mathematical models of cancerous growths have been developed, especially on solid tumors, in which growth primarily comes from cellular proliferation. The invasiveness of gliomas, however, requires a change in the concept to include cellular motility in addition to proliferative growth. In this article we review(More)
The prediction of the outcome of individual patients with glioblastoma would be of great significance for monitoring responses to therapy. We hypothesise that, although a large number of genetic-metabolic abnormalities occur upstream, there are two 'final common pathways' dominating glioblastoma growth - net rates of proliferation (rho) and dispersal (D).(More)
Glioblastomas are the most aggressive primary brain tumors, characterized by their rapid proliferation and diffuse infiltration of the brain tissue. Survival patterns in patients with glioblastoma have been associated with a number of clinicopathologic factors including age and neurologic status, yet a significant quantitative link to in vivo growth(More)
Gliomas are uniformly fatal forms of primary brain neoplasms that vary from low- to high-grade (glioblastoma). Whereas low-grade gliomas are weakly angiogenic, glioblastomas are among the most angiogenic tumors. Thus, interactions between glioma cells and their tissue microenvironment may play an important role in aggressive tumor formation and progression.(More)
PURPOSE Hypoxia is associated with resistance to radiotherapy and chemotherapy and activates transcription factors that support cell survival and migration. We measured the volume of hypoxic tumor and the maximum level of hypoxia in glioblastoma multiforme before radiotherapy with [(18)F]fluoromisonidazole positron emission tomography to assess their impact(More)
Serial magnetic resonance images of 27 patients with untreated World Health Organization grade II oligodendrogliomas or mixed gliomas were reviewed retrospectively to study the kinetics of tumor growth before anaplastic transformation. Analysis of the mean tumor diameters over time showed constant growth. Linear regression, using a mixed model, found an(More)