Kristin Frinkley

Learn More
The speed at which shear waves propagate in tissue can be used to quantify the shear modulus of the tissue. As many groups have shown, shear waves can be generated within tissues using focused, impulsive, acoustic radiation force excitations, and the resulting displacement response can be ultrasonically tracked through time. The goals of the work herein are(More)
Many groups are studying acoustic radiation force-based imaging modalities to determine the mechanical properties of tissue. Acoustic Radiation Force Impulse (ARFI) imaging is one of these modalities that uses standard diagnostic ultrasound scanners to generate localized, impulsive, acoustic radiation force in tissue. This radiation force generates tissue(More)
The evaluation of lesions in the gastrointestinal (GI) tract using ultrasound can suffer from poor contrast between healthy and diseased tissue. Acoustic Radiation Force Impulse (ARFI) imaging provides information about the mechanical properties of tissue using brief, high-intensity, focused ultrasound to generate radiation force and ultrasonic(More)
Acoustic Radiation Force Impulse (ARFI) imaging utilizes brief, high energy, focused acoustic pulses to generate radiation force in tissue, and ultrasonic correlation-based methods to detect the resulting tissue displacements in order to image the relative mechanical properties of tissue. The magnitude and spatial extent of the applied force is dependent(More)
A new method to characterize a material's attenuation using acoustic radiation force is proposed. Comparison of displacement magnitudes generated in a homogeneous material by acoustic radiation force excitations can be used to estimate the material's attenuation when the excitations are applied over a range of focal depths while maintaining a constant(More)
  • 1