Kristin D. Kernohan

Learn More
Human developmental disorders caused by chromatin dysfunction often display overlapping clinical manifestations, such as cognitive deficits, but the underlying molecular links are poorly defined. Here, we show that ATRX, MeCP2, and cohesin, chromatin regulators implicated in ATR-X, RTT, and CdLS syndromes, respectively, interact in the brain and colocalize(More)
An increasing number of proteins involved in genome organization have been implicated in neurodevelopmental disorders, highlighting the importance of chromatin architecture in the developing CNS. The CCCTC-binding factor (CTCF) is a zinc finger DNA binding protein involved in higher-order chromatin organization, and mutations in the human CTCF gene cause an(More)
Imprinted genes are an epigenetically regulated class of genes that are preferentially expressed from one parental allele. A number of these genes are crucial for placental function and embryonic growth in mice and humans. Disruption of imprinted genes is also associated with several neurodevelopmental disorders, although the role of genomic imprinting in(More)
ATRX and MeCP2 belong to an expanding group of chromatin-associated proteins implicated in human neurodevelopmental disorders, although their gene-regulatory activities are not fully resolved. Loss of ATRX prevents full repression of an imprinted gene network in the postnatal brain and in this study we address the mechanistic aspects of this regulation. We(More)
Protein translation is an essential cellular process initiated by the association of a methionyl-tRNA with the translation initiation factor eIF2. The Met-tRNA/eIF2 complex then associates with the small ribosomal subunit, other translation factors and mRNA, which together comprise the translational initiation complex. This process is regulated by the(More)
Stanniocalcin 2 (STC2) is a secreted protein activated by (PKR)-like Endoplasmic Reticulum Kinase (PERK) signalling under conditions of ER stress in vitro. Over-expression of STC2 in mice leads to a growth-restricted phenotype; however, the physiological function for STC2 has remained elusive. Given the relationship of STC2 to PERK signalling, the objective(More)
The clinical translation of next-generation sequencing has created a paradigm shift in the diagnostic assessment of individuals with suspected rare genetic diseases. Whole-exome sequencing (WES) simultaneously examines the majority of the coding portion of the genome and is rapidly becoming accepted as an efficient alternative to clinical Sanger sequencing(More)
ATRX is a chromatin remodeling protein involved in deposition of the histone variant H3.3 at telomeres and pericentromeric heterochromatin. It also influences the expression level of specific genes; however, deposition of H3.3 at transcribed genes is currently thought to occur independently of ATRX. We focused on a set of genes, including the autism(More)
Deleterious variants in the same gene present in two or more families with overlapping clinical features provide convincing evidence of a disease-gene association; this can be a challenge in the study of ultrarare diseases. To facilitate the identification of additional families, several groups have created "matching" platforms. We describe four individuals(More)
Manganese (Mn) and zinc (Zn) are essential divalent cations used by cells as protein cofactors; various human studies and animal models have demonstrated the importance of Mn and Zn for development. Here we describe an autosomal-recessive disorder in six individuals from the Hutterite community and in an unrelated Egyptian sibpair; the disorder is(More)