Learn More
P-type ATPases make up a large superfamily of ATP-driven pumps involved in the transmembrane transport of charged substrates. We have performed an analysis of conserved core sequences in 159 P-type ATPases. The various ATPases group together in five major branches according to substrate specificity, and not according to the evolutionary relationship of the(More)
Plant nutrition critically depends on the activity of membrane transporters that translocate minerals from the soil into the plant and are responsible for their intra- and intercellular distribution. Most plant membrane transporters are encoded by multigene families whose members often exhibit overlapping expression patterns and a high degree of sequence(More)
Members of the P-type ATPase ion pump superfamily are found in all three branches of life. Forty-six P-type ATPase genes were identified in Arabidopsis, the largest number yet identified in any organism. The recent completion of two draft sequences of the rice (Oryza sativa) genome allows for comparison of the full complement of P-type ATPases in two(More)
A total of 45 genes encoding for P-type ATPases have been identified in the complete genome sequence of Arabidopsis. Thus, this plant harbors a primary transport capability not seen in any other eukaryotic organism sequenced so far. The sequences group in all five subfamilies of P-type ATPases. The most prominent subfamilies are P(1B) ATPases (heavy metal(More)
The GO annotation dataset provided by the UniProt Consortium (GOA: http://www.ebi.ac.uk/GOA) is a comprehensive set of evidenced-based associations between terms from the Gene Ontology resource and UniProtKB proteins. Currently supplying over 100 million annotations to 11 million proteins in more than 360,000 taxa, this resource has increased 2-fold over(More)
Recent genomic data in the model plant Arabidopsis thaliana reveal the existence of at least 11 Ca(2+)-ATPase genes, and an analysis of expressed sequence tags suggests that the number of calcium pumps in this organism might be even higher. A phylogenetic analysis shows that 11 Ca(2+)-ATPases clearly form distinct groups, type IIA (or ECA for ER-type(More)
The plasma membrane H+-ATPase is a proton pump belonging to the P-type ATPase superfamily and is important for nutrient acquisition in plants. The H+-ATPase is controlled by an autoinhibitory C-terminal regulatory domain and is activated by 14-3-3 proteins which bind to this part of the enzyme. Alanine-scanning mutagenesis through 87 consecutive amino acid(More)
The lipid composition of membranes is a key determinant for cold tolerance, and enzymes that modify membrane structure seem to be important for low-temperature acclimation. We have characterized ALA1 (for aminophospholipid ATPase1), a novel P-type ATPase in Arabidopsis that belongs to the gene family ALA1 to ALA11. The deduced amino acid sequence of ALA1 is(More)
IntEnz is the name for the Integrated relational Enzyme database and is the official version of the Enzyme Nomenclature. The Enzyme Nomenclature comprises recommendations of the Nomenclature Committee of the International Union of Bio chemistry and Molecular Biology (NC-IUBMB) on the nomenclature and classification of enzyme-catalysed reactions. IntEnz is(More)