Learn More
The distribution and morphology of glutamatergic synapses on Drosophila bodywall muscle fibers were examined at the single-synapse level using immunocytochemistry and electrophysiology. We find that glutamate-immunoreactive motor endings innervate the entire larval bodywall musculature, with each muscle fiber receiving at least one glutamatergic ending. The(More)
We have cloned and characterized JIL-1, a novel tandem kinase in Drosophila that associates with the chromosomes throughout the cell cycle. Antibody staining and live imaging of JIL-1-GFP transgenic flies show that JIL-1 localizes to the gene-rich interband regions of larval polytene chromosomes and is upregulated almost 2-fold on the hypertranscribed male(More)
The primary structure of the major embryonic Notch transcript is presented, as determined by sequence analysis of overlapping cDNA clones. The 10,148 bp sequence corresponding to this transcript possesses an 8109 bp open reading frame that potentially codes for a 2703 amino acid protein. We show that this polypeptide contains a repeated structure composed(More)
To analyze the function of the chromosomal kinase JIL-1, we generated an allelic series of hypomorphic and null mutations. JIL-1 is an essential kinase for viability, and reduced levels of JIL-1 kinase activity lead to a global change in chromatin structure. In JIL-1 hypomorphs, euchromatic regions of polytene chromosomes are severely reduced and the(More)
We have used a yeast two-hybrid interaction assay to identify Chromator, a novel chromodomain containing protein that interacts directly with the putative spindle matrix protein Skeletor. Immunocytochemistry demonstrated that Chromator and Skeletor show extensive co-localization throughout the cell cycle. During interphase Chromator is localized on(More)
The Notch gene in Drosophila encodes a transmembrane protein with homology to EGF that appears to mediate cell-cell interactions necessary for proper epidermal vs. neural fate decisions. In this study, we examine Notch expression in detail throughout embryonic and imaginal development using confocal laser-scanning microscopy and specific mAb probes. We find(More)
In this study, we show that a reduction in the levels of the JIL-1 histone H3S10 kinase results in the spreading of the major heterochromatin markers dimethyl H3K9 and HP1 to ectopic locations on the chromosome arms, with the most pronounced increase on the X chromosomes. Genetic interaction assays demonstrated that JIL-1 functions in vivo in a pathway that(More)
In this study we have generated two new hypomorphic Chro alleles and analyzed the consequences of reduced Chromator protein function on polytene chromosome structure. We show that in Chro(71)/Chro(612) mutants the polytene chromosome arms were coiled and compacted with a disruption and misalignment of band and interband regions and with numerous ectopic(More)
We have used immunocytochemistry and cross-immunoprecipitation analysis to demonstrate that Megator (Bx34 antigen), a Tpr ortholog in Drosophila with an extended coiled-coil domain, colocalizes with the putative spindle matrix proteins Skeletor and Chromator during mitosis. Analysis of P-element mutations in the Megator locus showed that Megator is an(More)
In leech, the central projections of peripheral sensory neurons segregate into specific axonal tracts, which are distinguished by differential expression of surface antigens recognized by the monoclonal antibodies Lan3-2 and Lan4-2. Lan3-2 recognizes an epitope expressed on axons that segregate into three distinct axon fascicles. In contrast, the(More)