Learn More
Dendritic spines are micron-sized membrane protrusions receiving most excitatory synaptic inputs in the mammalian brain. Spines form and grow during long-term potentiation (LTP) of synaptic strength. However, the source of membrane for spine formation and enlargement is unknown. Here we report that membrane trafficking from recycling endosomes is required(More)
Neurotrophins regulate neuronal survival, differentiation, and synaptic function. To understand how neurotrophins elicit such diverse responses, we elucidated signaling pathways by which brain-derived neurotrophic factor (BDNF) activates gene expression in cultured neurons and hippocampal slices. We found, unexpectedly, that the transcription factor cyclic(More)
Complete reconstructions of vertebrate neuronal circuits on the synaptic level require new approaches. Here, serial section transmission electron microscopy was automated to densely reconstruct four volumes, totaling 670 μm(3), from the rat hippocampus as proving grounds to determine when axo-dendritic proximities predict synapses. First, in contrast with(More)
Dendritic spines are the primary recipients of excitatory input in the central nervous system. They provide biochemical compartments that locally control the signaling mechanisms at individual synapses. Hippocampal spines show structural plasticity as the basis for the physiological changes in synaptic efficacy that underlie learning and memory. Spine(More)
Dendritic spines are the primary site of excitatory input on most principal neurons. Long-lasting changes in synaptic activity are accompanied by alterations in spine shape, size and number. The responsiveness of thin spines to increases and decreases in synaptic activity has led to the suggestion that they are 'learning spines', whereas the stability of(More)
Endosomes are essential to dendritic and synaptic function in sorting membrane proteins for degradation or recycling, yet little is known about their locations near synapses. Here, serial electron microscopy was used to ascertain the morphology and distribution of all membranous intracellular compartments in distal dendrites of hippocampal CA1 pyramidal(More)
Astroglia are integral components of synapse formation and maturation during development. Less is known about how astroglia might influence synaptogenesis in the mature brain. Preparation of mature hippocampal slices results in synapse loss followed by recuperative synaptogenesis during subsequent maintenance in vitro. Hence, this model system was used to(More)
Enlargement of dendritic spines and synapses correlates with enhanced synaptic strength during long-term potentiation (LTP), especially in immature hippocampal neurons. Less clear is the nature of this structural synaptic plasticity on mature hippocampal neurons, and nothing is known about the structural plasticity of inhibitory synapses during LTP. Here(More)
Altered dendritic spines are characteristic of traumatized or diseased brain. Two general categories of spine pathology can be distinguished: pathologies of distribution and pathologies of ultrastructure. Pathologies of spine distribution affect many spines along the dendrites of a neuron and include altered spine numbers, distorted spine shapes, and(More)
A b s t r a c t Objective: Analysis of brain ultrastructure is needed to reveal how neurons communicate with one another via synapses and how disease processes alter this communication. In the past, such analyses have usually been based on single or paired sections obtained by electron microscopy. Reconstruction from multiple serial sections provides a much(More)