Kristen E Pascal

Learn More
Urinary tract infections are a major source of morbidity among women, with the majority caused by uropathogenic Escherichia coli. Our objective was to test if uropathogenic E. coli suppress the innate immune response of bladder epithelial cells. We found that bladder epithelial cells secrete interleukin-6 and interleukin-8 in response to non-pathogenic E.(More)
Bacterial vaginosis is the most common vaginal disorder among women of reproductive age. The pathogenesis of bacterial vaginosis is poorly understood, but is defined by a transition in the vaginal flora from the predominant Lactobacillus species to other bacterial species such as Atopobium vaginae and Gardnerella vaginalis. This change is associated with an(More)
Traditional approaches to antimicrobial drug development are poorly suited to combatting the emergence of novel pathogens. Additionally, the lack of small animal models for these infections hinders the in vivo testing of potential therapeutics. Here we demonstrate the use of the VelocImmune technology (a mouse that expresses human antibody-variable heavy(More)
Atopobium vaginae, a fastidious, anaerobic, Gram-positive cocci-shaped bacterium that generates large quantities of lactic acid, is associated with bacterial vaginosis (BV). Published nucleic acid amplification tests for identifying A. vaginae are directed toward the 16S ribosomal DNA with suboptimal specificity and require isolation of the organism. Here,(More)
  • 1