Kristan Lee Corwin

Learn More
Broadband noise on supercontinuum spectra generated in microstructure fiber is shown to lead to amplitude fluctuations as large as 50% for certain input laser pulse parameters. We study this noise using both experimental measurements and numerical simulations with a generalized stochastic nonlinear Schrödinger equation, finding good quantitative agreement(More)
We demonstrate a robust method of stabilizing a diode laser frequency to an atomic transition. This technique employs the Zeeman shift to generate an antisymmetric signal about a Doppler-broadened atomic resonance, and therefore offers a large recapture range as well as high stability. The frequency of a 780-nm diode laser, stabilized to such a signal in(More)
The difficulty of fusion splicing hollow-core photonic bandgap fiber (PBGF) to conventional step index single mode fiber (SMF) has severely limited the implementation of PBGFs. To make PBGFs more functional we have developed a method for splicing a hollow-core PBGF to a SMF using a commercial arc splicer. A repeatable, robust, low-loss splice between the(More)
A frequency comb generated by a 167 MHz repetition frequency erbium-doped fiber ring laser using a carbon nanotube saturable absorber is phase-stabilized for the first time. Measurements of the in-loop phase noise show an integrated phase error on the carrier envelope offset frequency of 0.35 radians. The carbon nanotube fiber laser comb is compared with a(More)
A frequency comb is generated with a chromium-doped forsterite femtosecond laser, spectrally broadened in a dispersion-shifted highly nonlinear fiber, and stabilized. The resultant evenly spaced comb of frequencies ranges from 1.1 to beyond 1.8 microm. The frequency comb was referenced simultaneously to the National Institute of Standards and Technology's(More)
Date The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline. Several innovations in laser trapping and cooling of alkali atoms are described. These topics share a common motivation to develop techniques for(More)
Lasing from population inversion is demonstrated from gas contained in a hollow-core kagome structured photonic crystal fiber. Laser pulses in the mid-IR (3.1–3.2 µm) were generated by optically pumping at λ ∼ 1.5 µm.