Learn More
Congenital generalized lipodystrophy (CGL) and pulmonary arterial hypertension (PAH) have recently been associated with mutations in the caveolin-1 ( CAV1 ) gene, which encodes the primary structural protein of caveolae. However, little is currently known about how these CAV1 mutations impact caveolae formation or contribute to the development of disease.(More)
Metal ion binding domains are found in proteins that mediate transport, buffering or detoxification of metal ions. In this study, we have performed an in silico analysis of metal binding proteins and have identified putative metal binding motifs for the ions of cadmium, cobalt, zinc, arsenic, mercury, magnesium, manganese, molybdenum and nickel. A pattern(More)
Pseudomonas aeruginosa lipase is a 29-kDa protein that, following the determination of its crystal structure, was postulated to have a lid that stretched between residues 125 and 148. In this paper, using molecular dynamics simulations, we propose that there exists, in addition to the above-mentioned lid, a novel second lid in this lipase. We further show(More)
Cisplatin is a classical chemotherapeutic agent used in treating several forms of cancer including head and neck. However, cells develop resistance to the drug in some patients through a range of mechanisms, some of which are poorly understood. Using isolated plasma membrane vesicles as a model system, we present evidence suggesting that cisplatin induced(More)
Caveolin-1 (Cav1) drives the formation of flask-shaped membrane invaginations known as caveolae that participate in signaling, clathrin-independent endocytosis and mechanotransduction. Overexpression or mutations of Cav1 can lead to its mistrafficking, including its accumulation in a perinuclear compartment previously identified as the Golgi complex. Here,(More)
Membrane scission is essential for intracellular trafficking. While BAR domain proteins such as endophilin have been reported in dynamin-independent scission of tubular membrane necks, the cutting mechanism has yet to be deciphered. Here, we combine a theoretical model, in vitro, and in vivo experiments revealing how protein scaffolds may cut tubular(More)
Beta-hairpins are the simplest form of beta-sheets which, due to the presence of long-range interactions, can be considered as tertiary structures. Molecular dynamics simulation is a powerful tool that can unravel whole pathways of protein folding/unfolding at atomic resolution. We have performed several molecular dynamics simulations, to a total of over(More)
Current models of lipid rafts propose that lipid domains exist as nanoscale compositional fluctuations and these fluctuations can potentially be stabilized into larger domains, consequently better compartmentalizing cellular functions. However, the mechanisms governing stabilized raft assembly and function remain unclear. Here, we test the role of(More)
Diffusion of particles in curved surfaces is inherently complex compared with diffusion in a flat membrane, owing to the nonplanarity of the surface. The consequence of such nonplanar geometry on diffusion is poorly understood but is highly relevant in the case of cell membranes, which often adopt complex geometries. To address this question, we developed a(More)
  • 1