Krishnan B. Chandran

Learn More
The relationships among vascular geometry, hemodynamics, and plaque development in the coronary arteries are complex and not yet well understood. This paper reports a methodology for the quantitative analysis of in vivo coronary morphology and hemodynamics, with particular emphasis placed on the critical issues of image segmentation and the automated(More)
Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works, must be obtained from the IEEE. ABSTRACT A common hypothesis is(More)
Identification of anatomical features is a necessary step for medical image analysis. Automatic methods for feature identification using conventional pattern recognition techniques typically classify an object as a member of a predefined class of objects, but do not attempt to recover the exact or approximate shape of that object. For this reason, such(More)
Quantitative evaluation of cardiac function from cardiac images requires the identification of the myocardial walls. This generally requires the clinician to view the image and interactively trace the contours. This method is susceptible to great variability that depends on the experience and knowledge of the particular operator tracing the contours. The(More)
The mitral valve (MV) apparatus consists of the two asymmetric leaflets, the saddle-shaped annulus, the chordae tendineae, and the papillary muscles. MV function over the cardiac cycle involves complex interaction between the MV apparatus components for efficient blood circulation. Common diseases of the MV include valvular stenosis, regurgitation, and(More)
The relationships among vascular geometry, hemodynamics, and plaque development in coronary arteries are not yet well understood. This in-vivo study was based on the observation that plaque frequently develops at the inner curvature of a vessel, presumably due to a relatively lower wall shear stress. We have shown that circumferential plaque distribution(More)
This thesis presents a stable fluid structural interaction technique to simulate the dynamics of tissue valves including bio-prosthetic heart valves and natural heart valves under physiological Reynolds numbers. A partitioned approach is implemented where the equations governing the flow and the displacement of the structure are solved using two distinct(More)
  • 1