Krishna M. Yerramsetty

Learn More
A novel technique is presented for identifying potential chemical penetration enhancers (CPEs) based on changes in the electrical resistance of skin. Specifically, a multi-well resistance chamber was designed and constructed to facilitate more rapid determination of the effect of CPEs on skin resistance. The experimental setup was validated using nicotine(More)
Using chemical penetration enhancers (CPEs), transdermal drug delivery (TDD) offers an alternative route for insulin administration, wherein the CPEs reversibly reduce the barrier resistance of the skin. However, there is a lack of sufficient information concerning the effect of CPE chemical structure on insulin permeation. To address this limitation, we(More)
Enhancing transdermal delivery of insulin using chemical penetration enhancers (CPEs) has several advantages over other non-traditional methods; however, lack of suitable predictive models, make experimentation the only alternative for discovering new CPEs. To address this limitation, a quantitative structure-property relationship (QSPR) model was(More)
One promising way to breach the skin's natural barrier to drugs is by the application of chemicals called penetration enhancers. However, identifying potential enhancers is difficult and time consuming. We have developed a virtual screening algorithm for generating potential chemical penetration enhancers (CPEs) by integrating nonlinear, theory-based(More)
Octanol-water partition coefficient (K(ow)) is an important thermodynamic property used to characterize the partitioning of solutes between an aqueous and organic phase and has importance in such areas as pharmacology, pharmacokinetics, pharmacodynamics, chemical production and environmental toxicology. We present a non-linear quantitative(More)
  • 1