Krishna C. Vishnubhatla

Learn More
We report on the fabrication by a femtosecond laser of an optofluidic device for optical trapping and stretching of single cells. Versatility and three-dimensional capabilities of this fabrication technology provide straightforward and extremely accurate alignment between the optical and fluidic components. Optical trapping and stretching of single red(More)
We applied two-photon polymerization to fabricate 3D synthetic niches arranged in complex patterns to study the effect of mechano-topological parameters on morphology, renewal and differentiation of rat mesenchymal stromal cells. Niches were formed in a photoresist with low auto-fluorescence, which enabled the clear visualization of the fluorescence(More)
The authors present the design and optimization of an optofluidic monolithic chip, able to provide optical trapping and controlled stretching of single cells. The chip is fabricated in a fused silica glass substrate by femtosecond laser micromachining which can produce both optical waveguides and microfluidic channels with great accuracy. A new fabrication(More)
We report on the fabrication of shape-controlled microchannels in fused silica by femtosecond laser irradiation at 600 kHz repetition rate followed by chemical etching. The shape control is achieved by suitable wobbling of the glass substrate during the irradiation process. Cylindrical microchannels with uniform cross-sections are demonstrated with an(More)
  • 1