Learn More
Cyan fluorescent proteins (CFPs), such as Cerulean, are widely used as donor fluorophores in Förster resonance energy transfer (FRET) experiments. Nonetheless, the most widely used variants suffer from drawbacks that include low quantum yields and unstable flurorescence. To improve the fluorescence properties of Cerulean, we used the X-ray structure to(More)
KLP64D and KLP68D are members of the kinesin-II family of proteins in Drosophila. Immunostaining for KLP68D and ribonucleic acid in situ hybridization for KLP64D demonstrated their preferential expression in cholinergic neurons. KLP68D was also found to accumulate in cholinergic neurons in axonal obstructions caused by the loss of kinesin light chain.(More)
The taste bristles of the adult labellum develop from the labial discs within the first 30 hr of pupation. The neuron-specific antibody Mab22C10 and the tissue-specific beta-galactosidase activity in the A37 strain were used as cell markers for the developing sensilla. These experiments revealed that the sensory progenitors of all the labellar bristles are(More)
BACKGROUND Kinesin II-mediated anterograde intraflagellar transport (IFT) is essential for the assembly and maintenance of flagella and cilia in various cell types. Kinesin associated protein (KAP) is identified as the non-motor accessory subunit of Kinesin II, but its role in the corresponding motor function is not understood. RESULTS We show that(More)
We have identified the Drosophila homologue of the non-motor accessory subunit of kinesin-II motor complex. It is homologous to the SpKAP115 of the sea urchin, KAP3A and KAP3B of the mouse, and SMAP protein in humans. In situ hybridization using a DmKAP specific cRNA probe has revealed a dynamic pattern of expression in the developing nervous system. The(More)
The olfactory sensilla on the antenna of adult Drosophila melanogaster develop during the first 36 hr after pupariation, from their anlagen in the cephalic disc. We have used tissue-specific beta-galactosidase expression in the enhancer trap strain A101.IF3 and the monoclonal antibody 22C10 as sensory cell markers, as well as the lineage tracer(More)
We have examined the mechanisms underlying the development of the olfactory sense organs on the third segment of the antenna of Drosophila. Our studies suggest that a novel developmental strategy is employed. Specification of the founder or precursor cell is not governed by the genes of the achaete-scute complex. Another basic helix-loop-helix encoding(More)
Toward the end of spermiogenesis, spermatid nuclei are compacted and the clonally related spermatids individualize to become mature and active sperm. Studies in Drosophila showed that caudal end-directed movement of a microfilament-rich structure, called investment cone, expels the cytoplasmic contents of individual spermatids. F-actin dynamics plays an(More)
Spermatids derived from a single gonial cell remain interconnected within a cyst and elongate by synchronized growth inside the testis in Drosophila. Cylindrical spectrin-rich elongation cones form at their distal ends during the growth. The mechanism underlying this process is poorly understood. We found that developing sperm tails were abnormally coiled(More)
Members of the kinesin superfamily of motor proteins are essential for mitotic and meiotic spindle organization, chromosome segregation, organelle and vesicle transport, and many other processes that require microtubule-based transport. A compound, adociasulfate-2, was isolated from a marine sponge, Haliclona (also known as Adocia) species, that inhibited(More)