Learn More
To increase the level of adsorption of heavy metal ions in surface-engineered yeasts, a yeast metallothionein (YMT) was tandemly fused and displayed by means of an alpha-agglutinin-based display system. The display of the YMT and its tandem repeats was examined by immunofluorescent labeling. The adsorption and recovery of Cd(2+) on the cell surface was(More)
The bioadsorption of metal ions using microorganisms is an attractive technology for the recovery of rare metal ions as well as removal of toxic heavy metal ions from aqueous solution. In initial attempts, microorganisms with the ability to accumulate metal ions were isolated from nature and intracellular accumulation was enhanced by the overproduction of(More)
The gene encoding organophosphorus hydrolase (OPH) from Flavobacterium species was expressed on the cell surface of Saccharomyces cerevisiae MT8-1 using a glycosylphosphatidylinositol (GPI) anchor linked to the C-terminal region of OPH. Immunofluorescence microscopy confirmed the localization of OPH on the cell surface, and fluorescence intensity(More)
Large amounts of fossil fuels are consumed every day in spite of increasing environmental problems. To preserve the environment and construct a sustainable society, the use of biofuels derived from different kinds of biomass is being practiced worldwide. Although bioethanol has been largely produced, it commonly requires food crops such as corn and sugar(More)
In modern industrial society, molybdenum is one of the important metals for development of the industry of rare metals. It is important to recycle the rare metals from wastes because they are technically and economically difficult to be dug and be purified, and they exist in only a few regions in the world. In this study, ModE protein derived from(More)
We developed a novel method to coat living non-genetically modified (GM) cells with functional recombinant proteins. First, we prepared GM yeast to secrete constructed proteins that have two domains: a functional domain and a binding domain that recognizes other cells. Second, we cocultivated GM and non-GM yeasts that share and coutilize the medium(More)
Candida albicans is normally present in nearly all humans but can cause fatal diseases in immunocompromised patients. The agglutinin-like sequence (ALS) gene family of C. albicans has been suggested to be important for biofilm formation on medical devices. Here, we cloned all ALS genes and determined the binding properties of their gene products by cell(More)
Organic solvents are toxic to living cells. In eukaryotes, cells with organic solvent tolerance have only been found in Saccharomyces cerevisiae. Although several factors contributing to organic solvent tolerance have been identified in previous studies, the mechanism of how yeast cells naturally respond to organic solvent stress is not known. We(More)
Vector engineering and gene disruption in host cells were attempted for the enhancement of alpha-agglutinin-based display of proteins on the cell surface in yeast. To evaluate the display efficiency by flow cytometric analysis, DsRed-monomer fused with FLAG-tag was displayed and immunostained as a model protein. The use of leu2-d in the expression vector(More)
Three beta-glucosidase- and two endoglucanase-encoding genes were cloned from Aspergillus oryzae, and their gene products were displayed on the cell surface of the sake yeast, Saccharomyces cerevisiae GRI-117-UK. GRI-117-UK/pUDB7 displaying beta-glucosidase AO090009000356 showed the highest activity against various substrates and efficiently produced(More)