Kouichi Hasegawa

Learn More
Human ES (hES) cell lines are considered to be a valuable resource for medical research and for applications in cell therapy and drug discovery. For such utilization of hES cells to be realized, however, protocols involved in the use of hES cells, such as those for establishment, propagation, and cryopreservation, have still to be improved. Here, we report(More)
Human embryonic stem cells (hESCs) are thought to be a promising cell source for cell transplantation therapy. For such a clinical application, the hESCs should be manipulated using appropriate and qualified materials. In this study, we examined the efficacy of recombinant human laminin (rhLM) isoforms on the undifferentiated growth of hESCs. We first(More)
The applicability of human embryonic stem cells (hESCs) will be greatly enhanced by techniques that permit efficient genetic modification with multiple transgenes. We report here on single-promoter-driven foot-and-mouth disease virus segment 2A-mediated multicistronic expression of a transgene in hESCs. Efficient multicistronic expression of the transgene(More)
Human embryonic stem (hES) cells are regarded as a potentially unlimited source of cellular materials for regenerative medicine. For biological studies and clinical applications using primate ES cells, the development of a general strategy to obtain efficient gene delivery and genetic manipulation, especially gene targeting via homologous recombination(More)
Nanog is a homeodomain transcription factor that is expressed specifically in undifferentiated embryonic stem (ES) cells and has been shown to be essential in the maintenance of pluripotency in mouse ES cells. To examine the function of NANOG in primate ES cells, we generated transgenic monkey ES cell lines expressing three- to seven-fold higher levels of(More)
BACKGROUND Mouse embryonic stem (ES) cells can differentiate into female and male germ cells in vitro. Primate ES cells can also differentiate into immature germ cells in vitro. However, little is known about the differentiation markers and culture conditions for in vitro germ cell differentiation from ES cells in primates. Monkey ES cells are thus(More)
We investigated the possibility of shortening the interval between courses of the commonly prescribed 28-day MVP (mitomycin C, vindesine, and cisplatin) regimen in patients with non-small-cell lung cancer (NSCLC). We conducted a nonrandomized phase II study using recombinant human granulocyte colony-stimulating factor (G-CSF, Chugai) to explore the(More)
Random integration is one of the more straightforward methods to introduce a transgene into human embryonic stem (ES) cells. However, random integration may result in transgene silencing and altered cell phenotype due to insertional mutagenesis in undefined gene regions. Moreover, reliability of data may be compromised by differences in transgene(More)
Somatic cells can be reprogrammed to induced pluripotent stem (iPS) cells by ectopic expression of specific sets of transcription factors. Oct4, Sox2, and Klf4, factors that share many target genes in embryonic stem (ES) cells, are critical components in various reprogramming protocols. Nevertheless, it remains unclear whether these factors function(More)
Notch, Delta and Serrate encode transmembrane proteins that function in cell fate specification in the Drosophila melanogaster embryo. Here we report gene expression patterns and functional characterization of a Xenopus Serrate homolog, X-Serrate-1. The isolated cDNA encoded a transmembrane protein with a Delta/Serrate/LAG-2 domain, 16 epidermal growth(More)