Learn More
S100β-protein-positive cells in the anterior pituitary gland appear to possess multifunctional properties. Because of their pleiotropic features, S100β-positive cells are assumed to be of a heterogeneous or even a non-pituitary origin. The observation of various markers has allowed these cells to be classified into populations such as stem/progenitor cells,(More)
Proteoglycans are components of the extracellular matrix and comprise a specific core protein substituted with covalently linked glycosaminoglycan chains. Small leucine-rich proteoglycans (SLRPs) are a major family of proteoglycans and have key roles as potent effectors in cellular signaling pathways. Research during the last two decades has shown that(More)
Chemokines are mostly small secreted polypeptides whose signals are mediated by seven trans-membrane G-protein-coupled receptors. Their functions include the control of leukocytes and the intercellular mediation of cell migration, proliferation, and adhesion in several tissues. We have previously revealed that the CXC chemokine ligand 12 (CXCL12) and its(More)
S100β-positive cells, which do not express the classical pituitary hormones, appear to possess multifunctional properties and are assumed to be heterogeneous in the anterior pituitary gland. The presence of several protein markers has shown that S100β-positive cells are composed of populations such as stem/progenitor cells, epithelial cells, astrocytes and(More)
The anterior pituitary is a complex organ consisting of five types of hormone-producing cells, non–hormone-producing cells such as folliculostellate (FS) cells and vascular cells (endothelial cells and pericytes). We have previously shown that FS cells and pericytes produce fibromodulin, a small leucine-rich proteoglycan (SLRP). SLRPs are major(More)
Pituitary gland development is controlled by numerous signaling molecules, which are produced in the oral ectoderm and diencephalon. A newly described family of heparin-binding growth factors, namely midkine (MK)/pleiotrophin (PTN), is involved in regulating the growth and differentiation of many tissues and organs. Using in situ hybridization with(More)
Epithelial-mesenchymal transition (EMT) is a crucial event in wound healing, tissue repair and cancer progression in adult tissues. We have recently shown that transforming growth factor (TGF)-β-induced EMT involves isoform switching of fibroblast growth factor receptors by alternative splicing. We performed a microarray-based analysis at single exon level(More)
Laminin is a key component of the basement membrane and is involved in the structural scaffold and in cell proliferation and differentiation. Research has identified 19 laminin isoforms, which are assemblies of α, β, and γ chains (eg, the α1, β1, and γ1 chains form the laminin 111 isoform). Although laminin is known to be present in the anterior pituitary,(More)
The anterior pituitary gland comprises 5 types of hormone-producing cells and non-endocrine cells, such as folliculostellate (FS) cells. The cells form a lobular structure surrounded by extracellular matrix (ECM) but are not randomly distributed in each lobule; hormone-producing cells have affinities for specific cell types (topographic affinity), and FS(More)
Cadherins are a family of transmembrane glycoproteins that mediate cell-to-cell adhesion. A change in cadherin type in cells, i.e., cadherin switching, induces changes in the character of the cell. Recent studies of the developing rat adenohypophysis found that primordial cells co-expressed E- and N-cadherins, but that hormone-producing cells lost(More)