Korvin F. A. Walter

Learn More
Protein dynamics are essential for protein function, and yet it has been challenging to access the underlying atomic motions in solution on nanosecond-to-microsecond time scales. We present a structural ensemble of ubiquitin, refined against residual dipolar couplings (RDCs), comprising solution dynamics up to microseconds. The ensemble covers the complete(More)
Long-range correlated motions in proteins are candidate mechanisms for processes that require information transfer across protein structures, such as allostery and signal transduction. However, the observation of backbone correlations between distant residues has remained elusive, and only local correlations have been revealed using residual dipolar(More)
Residual dipolar couplings (RDCs) provide information about the dynamic average orientation of inter-nuclear vectors and amplitudes of motion up to milliseconds. They complement relaxation methods, especially on a time-scale window that we have called supra-tau(c) (tau(c) < supra-tau(c) < 50 micros). Here we present a robust approach called Self-Consistent(More)
Molecular recognition plays a central role in many biological processes. For enzymatic reactions and slow protein–protein recognition events, turn-over rates and on-rates in the millisecond-to-second time scale have been connected to internal protein dynamics detected with atomic resolution by NMR spectroscopy, and in particular conformational sampling(More)
Intermolecular nuclear Overhauser effects (NOEs) between the integral outer membrane protein OmpX from Escherichia coli and small bicelles of dihexanoyl phosphatidylcholine (DHPC) and dimyristoyl phosphatidylcholine (DMPC) give insights into protein-lipid interactions. Intermolecular NOEs between hydrophobic tails of lipid and protein in the bicelles cover(More)
A robust procedure for the determination of protein-backbone motions on time scales of pico- to milliseconds directly from residual dipolar couplings has been developed that requires no additional scaling relative to external references. The results for ubiquitin (blue in graph: experimental N-HN order parameters) correspond closely to the amplitude,(More)
RDCs (residual dipolar couplings) in NMR spectroscopy provide information about protein dynamics complementary to NMR relaxation methods, especially in the previously inaccessible time window between the protein correlation time tau(c) and 50 micros. For ubiquitin, new modes of motion of the protein backbone could be detected using RDC-based techniques. An(More)
Physiological processes such as protein folding and molecular recognition are intricately linked to their dynamic signature, which is reflected in their thermal coefficient. In addition, the local conformational entropy is directly related to the degrees of freedom, which each residue possesses within its conformational space. Therefore, the temperature(More)
Residual dipolar couplings (RDCs) in proteins arise from independent external medium-related and internal protein-related ordering of the spin-bearing probe. Griesinger et al. developed a method for treating RDCs in proteins. The global ordering is given in the standard manner by a rank 2 tensor specified in a known molecular frame, MF. The local ordering(More)
This study presents the first application of the model-free analysis (MFA) (Meiler in J Am Chem Soc 123:6098-6107, 2001; Lakomek in J Biomol NMR 34:101-115, 2006) to methyl group RDCs measured in 13 different alignment media in order to describe their supra-tau (c) dynamics in ubiquitin. Our results indicate that methyl groups vary from rigid to very mobile(More)