Korine A. Ohiri

Learn More
Advances in microfluidic cell sorting have revolutionized the ways in which cell-containing fluids are processed, now providing performances comparable to, or exceeding, traditional systems, but in a vastly miniaturized format. These technologies exploit a wide variety of physical phenomena to manipulate cells and fluid flow, such as magnetic traps, sound(More)
Liquid biopsies hold enormous promise for the next generation of medical diagnoses. At the forefront of this effort, many are seeking to capture, enumerate and analyze circulating tumor cells (CTCs) as a means to prognosticate and develop individualized treatments for cancer. Capturing these rare cells, however, represents a major engineering challenge due(More)
Smart colloidal particles are routinely used as carriers for biological molecules, fluorescent reporters, cells, and other analytes for the purposes of sample preparation and detection. However, such particles are typically engineered to respond to a single type of stimulus (e.g., commercial magnetic beads to magnetic fields). Here, we demonstrate a unique(More)
Acoustophoresis refers to the displacement of suspended objects in response to directional forces from sound energy. Given that the suspended objects must be smaller than the incident wavelength of sound and the width of the fluidic channels are typically tens to hundreds of micrometers across, acoustofluidic devices typically use ultrasonic waves generated(More)
  • 1