Korbinian J. Kaltenecker

  • Citations Per Year
Learn More
Using conventional materials, the resolution of focusing and imaging devices is limited by diffraction to about half the wavelength of light, as high spatial frequencies do not propagate in isotropic materials. Wire array metamaterials, because of their extreme anisotropy, can beat this limit; however, focusing with these has only been demonstrated up to(More)
KORBINIAN J. KALTENECKER,* JACOB C. KÖNIG-OTTO, MARTIN MITTENDORFF, STEPHAN WINNERL, HARALD SCHNEIDER, MANFRED HELM, HANSPETER HELM, MARKUS WALTHER, AND BERND M. FISCHER French-German Research Institute of Saint-Louis, 5, Rue du Général Cassagnou 68301, Saint-Louis, France Institute of Physics, University of Freiburg, Hermann-Herder-Strasse 3, 79104(More)
A design of subwavelength terahertz waveguides is presented in this manuscript. The structure is composed of a linear chain of split-ring resonators (SRRs), i.e., artificial magnetic atoms. The energy transport along the chain can be described by magnetic plasmon propagation sustained via magnetic dipoles and conductive coupling. The simulation result shows(More)
Hyperlenses and hyperbolic media endoscopes can overcome the diffraction limit by supporting propagating high spatial frequency extraordinary waves. While hyperlenses can resolve subwavelength details far below the diffraction limit, images obtained from them are not perfect: resonant high spatial frequency slab modes as well as diffracting ordinary waves(More)
As an alternative to metallic resonators, dielectric resonators can increase radiation efficiencies of metasurfaces at terahertz frequencies. Such subwavelength resonators made from low-loss dielectric materials operate on the basis of oscillating displacement currents. For full control of electromagnetic waves, it is essential that dielectric resonators(More)
  • 1