Konstantinos D. Papadopoulos

Learn More
Keywords: Whistler waves Waves in plasma Pseudospectral methods Graphics processors a b s t r a c t Efficient spectral and pseudospectral algorithms for simulation of linear and nonlinear 3D whistler waves in a cold electron plasma are developed. These algorithms are applied to the simulation of whistler waves generated by loop antennas and spheromak-like(More)
The solar wind-magnetosphere coupling during substorms exhibits dynamical features in a wide range of spatial and temporal scales. The goal of our work is to combine the global and multi-scale description of magnetospheric dynamics in a unified data-derived model. For this purpose we use deterministic methods of nonlinear dynamics, together with a(More)
Heating of the ionosphere by high-frequency (HF), ordinary (O) mode electromagnetic waves can excite magnetic field aligned density striations (FAS), associated with upper and lower hybrid turbulence and electron heating. We have used Vlasov simulations in one spatial and two velocity dimensions to study the induced turbulence in the presence of striations(More)
Modulated high frequency radio frequency heating of the ionospheric F-region produces a local modulation of the electron temperature, and the resulting pressure gradient gives rise to a diamagnetic current. The oscillations of the diamagnetic current excite hydromagnetic waves in the ELF range that propagate away from the heated region. The generation of(More)
Efficient spectral and pseudospectral algorithms for simulation of linear and nonlinear 3D whistler waves in a cold electron plasma are developed. These algorithms are applied to the simulation of whistler waves generated by loop antennas and spheromak-like stationary waves of considerable amplitude. The algorithms are linearly stable and show good(More)
  • 1