Konstantina Papagiannaki

Learn More
We present a fundamentally different approach to classifying traffic flows according to the applications that generate them. In contrast to previous methods, our approach is based on observing and identifying patterns of host behavior at the transport layer. We analyze these patterns at three levels of increasing detail (i) the social, (ii) the functional(More)
Data-intensive applications that operate on large volumes of data have motivated a fresh look at the design of data center networks. The first wave of proposals focused on designing pure packet-switched networks that provide full bisection bandwidth. However, these proposals significantly increase network complexity in terms of the number of links and(More)
Network traffic arises from the superposition of Origin-Destination (OD) flows. Hence, a thorough understanding of OD flows is essential for modeling network traffic, and for addressing a wide variety of problems including traffic engineering, traffic matrix estimation, capacity planning, forecasting and anomaly detection. However, to date, OD flows have(More)
Well-known port numbers can no longer be used to reliably identify network applications. There is a variety of new Internet applications that either do not use well-known port numbers or use other protocols, such as HTTP, as wrappers in order to go through firewalls without being blocked. One consequence of this is that a simple inspection of the port(More)
The popularity of IEEE 802.11 WLANs has led to dense deployments in urban areas. High density leads to sub-optimal performance unless the interfering networks learn how to optimally use and share the spectrum. This paper proposes two fully distributed algorithms that allow (i) multiple interfering 802.11 access points to select their operating frequency in(More)
Recently, peer-to-peer (P2P) networks have emerged as an attractive solution to enable large-scale content distribution without requiring major infrastructure investments. While such P2P solutions appear highly beneficial for content providers and end-users, there seems to be a growing concern among Internet Service Providers (ISPs) that now need to support(More)
Enterprise WLANs have made a dramatic shift towards centralized architectures in the recent past. The reasons for such a change have been ease of management and better design of various control and security functions. The data path of WLANs, however, continues to use the distributed, random-access model, as defined by the popular DCF mechanism of the 802.11(More)
Traffic matrix estimation is well-studied, but in general has been treated simply as a statistical inference problem. In practice, however, network operators seeking traffic matrix information have a range of options available to them. Operators can measure traffic flows directly; they can perform partial flow measurement, and infer missing data using(More)
Energy management is a critical issue for mobile devices, with network activity often consuming a significant portion of the total system energy. In this paper, we propose Catnap, a system that reduces energy consumption of mobile devices by allowing them to sleep <i>during</i> data transfers. Catnap exploits high bandwidth wireless interfaces -- which(More)
The low cost and the ease of deployment of WiFi devices, as well as the need to support high bandwidth applications over 802.11 WLANs has led to the emergence of high density 802.11 networks in urban areas and enterprises. High density wireless networks, by design, face significant challenges due to increased interference resulting from the close proximity(More)