Konstantin S Kostov

Learn More
All chemical and biological reactions involve atomic motion, embodied in dynamic structural changes. Identifying these changes is the goal of time-resolved crystallography. The "raw" output of a time-resolved macromolecular crystallography experiment is the time-dependent set of difference electron density maps that span the desired time range and display(More)
A coarse-grained model for protein-folding dynamics is introduced based on a discretized representation of torsional modes. The model, based on the Ramachandran map of the local torsional potential surface and the class (hydrophobic/polar/neutral) of each residue, recognizes patterns of both torsional conformations and hydrophobic-polar contacts, with(More)
A recent theory for the long time dynamics of flexible chain molecules is applied for the first time to a peptide of biological importance, the neurotransmitter met-enkephalin. The dynamics of met-enkephalin is considerably more complicated than that of the previously studied glycine oligomers; met-enkephalin contains the interesting motions of phenyl(More)
A mechanism for grain growth and formation in the interstellar medium is proposed. In this mechanism, hydrogen molecules act as moderators. The process begins when they physisorb to the surface of the grain. Then, when a collision with a heavy atom occurs, the bonding energy is carried away by the evaporation of hydrogen molecules. Estimates are made of the(More)
The initial output of a time-resolved macromolecular crystallography experiment is a time-dependent series of difference electron density maps that displays the time-dependent changes in underlying structure as a reaction progresses. The goal is to interpret such data in terms of a small number of crystallographically refinable, time-independent structures,(More)
  • 1