Konstantin L Gavrilov

Learn More
Mammalian interphase and mitotic cells were analyzed for their cation composition using a three-dimensional high resolution scanning ion microprobe. This instrument maps the distribution of bound and unbound cations by secondary ion mass spectrometry (SIMS). SIMS analysis of cryofractured interphase and mitotic cells revealed a cell cycle dynamics of Ca2+,(More)
From a variety of analytical electron microscopy experiments, the chromosomes of dinoflagellates are known to contain sizeable amounts of cations, the latter thought to contribute to the neutralization of the negative charge carried by the phosphate groups in the DNA backbone. From previous Ca and Mg chelation experiments, it is also known that these(More)
Chronic metabolic acidosis increases urine calcium excretion without altering intestinal calcium absorption, suggesting that bone mineral is the source of the additional urinary calcium. During metabolic acidosis there appears to be an influx of protons into bone mineral, lessening the magnitude of the decrement in pH. Although in vitro studies strongly(More)
Chronic metabolic acidosis increases urinary calcium excretion without altering intestinal calcium absorption, suggesting that bone mineral is the source of the additional urinary calcium. In vivo and in vitro studies have shown that metabolic acidosis causes a loss of mineral calcium while buffering the additional hydrogen ions. Previously, we studied(More)
During an acute fall in systemic pH due to a decrease in the concentration of serum bicarbonate ([HCO(3)(-)]), metabolic acidosis, there is an influx of hydrogen ions into the mineral phase of bone, buffering the decrement in pH. When bone is cultured in medium modeling acute metabolic acidosis, the influx of hydrogen ions is coupled to an efflux of sodium(More)
Metabolic acidosis induces resorption of cultured bone, resulting in a net efflux of calcium (Ca) from the bone and an apparent loss of mineral potassium (K). However, in these organ cultures, there is diffusion of K between the medium and the crystal lattice, causing difficulty in interpretation of the acid-induced changes in mineral ion composition. To(More)
Osteoclasts are responsible for resorption of bone mineral. To determine how osteoclasts alter bone surface ion composition, neonatal mouse bone cells were isolated and cultured in the presence of parathyroid hormone (PTH) on bovine cortical bone. Surface ion composition of the resulting osteoclastic resorption pits was compared with that of unresorbed(More)
Studies of bone mineral ranging from cadaveric analysis to the use of high-resolution ion microprobe with secondary ion mass spectroscopy (SIMS) have concluded that bone is rich in sodium and potassium relative to calcium. Exposure of bone to acid conditions either in vitro or in vivo leads to an exchange of hydrogen ions for sodium and potassium buffering(More)
Detailed maps of the A-T distribution within human mitotic chromosomes labeled with BrdU are obtained with a high resolution scanning ion microprobe through the detection of bromine by imaging secondary ion mass spectrometry (SIMS). Corresponding maps of the emission loci of the molecular ion CN- describe the overall DNA, RNA and protein distribution in the(More)
The detection of bromine in human metaphase chromosomes labelled with the thymidine-analog BrdU, by imaging Secondary Ion Mass Spectrometry (SIMS) with a high resolution scanning ion microprobe, provides detailed maps of the AT distribution within the chromosomes. Similarly, maps of the emitted CN-molecular ions describe the overall DNA, RNA and protein(More)
  • 1