Konstantin G Kornev

Learn More
We describe a simple and versatile technique to produce magnetic tubes by filling carbon nanotubes (CNTs) with paramagnetic iron oxide particles ( approximately 10 nm diameter). Commercial ferrofluids were used to fill CNTs with an average outer diameter of 300 nm made via chemical vapor deposition into alumina membranes. Transmission electron microscopy(More)
The ability of Lepidoptera, or butterflies and moths, to drink liquids from rotting fruit and wet soil, as well as nectar from floral tubes, raises the question of whether the conventional view of the proboscis as a drinking straw can account for the withdrawal of fluids from porous substrates or of films and droplets from floral tubes. We discovered that(More)
A critical review of the problem of spontaneous penetration of a wetting liquid into pore channels shows that no theory exists to quantitatively predict the initial stage of imbibition. Since C. H. Bosanquet (1923, Phil. Mag. 45, 525), the theory operates with an universal velocity UBosanquet= (2γ cos θ/ρr)1/2, with γ being the surface tension, θ the(More)
We describe a phenomenon of ribbon-to-fiber transformation observed in the process of spinning of single wall carbon nanotubes dispersed in polymer solutions. In the process of spinning, a gel-like ribbon comprised of nanotube bundles bound by polymer is withdrawn from a solvent bath. We show that upon crossing the liquid-air interface, the ribbon may(More)
In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit: a b s t r a c t a r t i c l e i n f o Bacterial vaginosis (BV) is the most common(More)
Mouthparts of fluid-feeding insects have unique material properties with no human-engineered analogue: the feeding devices acquire sticky and viscous liquids while remaining clean. We discovered that the external surface of the butterfly proboscis has a sharp boundary separating a hydrophilic drinking region and a hydrophobic non-drinking region. The(More)
We have developed a method for laser beam manipulation by using a colloid of nickel nanorods produced by electroplating chemistry. It is shown that the shape of the laser beam passing through a colloid of nickel nanorods can be altered by varying the applied magnetic field. This effect is caused by multiple scattering and diffraction of the laser beam by(More)
We report on the development of a multifunctional magnetic rotator that has been built and used during the last five years by two groups from Clemson and Drexel Universities studying the rheological properties of microdroplets. This magnetic rotator allows one to generate rotating magnetic fields in a broad frequency band, from hertz to tens kilohertz. We(More)
Magnetic nanoparticles (MNPs), primarily iron oxide nanoparticles, have been incorporated into cellular spheroids to allow for magnetic manipulation into desired shapes, patterns and 3-D tissue constructs using magnetic forces. However, the direct and long-term interaction of iron oxide nanoparticles with cells and biological systems can induce adverse(More)
Related Articles Numerical study of pulsatile channel flows undergoing transition triggered by a modelled stenosis Phys. Fluids 24, 121901 (2012) Optimal feeding is optimal swimming for all Péclet numbers Phys. Fluids 23, 101901 (2011) The hungry fly: Hydrodynamics of feeding in the common house fly Phys. Fluids 23, 091110 (2011) Measurement of fluid flow(More)