Konrad Lehmann

Learn More
We describe a strongly biologically motivated artificial neural network approach to model neurogenesis and synaptic turnover as it naturally occurs for example in the hippocampal dentate gyrus (DG) of the developing and adult mammalian and human brain. The results suggest that cell proliferation (CP) has not only a functional meaning for computational tasks(More)
By combining behavioural analyses with intrinsic signal optical imaging, we analysed visual performance and visual cortical activity in the albino mouse strain BALB/c, which is increasingly being used as an animal model of neuropsychological disorders. Visual acuity, as measured by a virtual-reality optomotor system, was 0.12 cycles per degree (cyc/deg) in(More)
The proliferation and survival of new cells in the dentate gyrus of mammals is a complex process that is subject to numerous influences, presenting a confusing picture. We suggest regarding these processes on the level of small networks, which can be simulated in silico and which illustrate in a nutshell the influences that proliferating cells exert on(More)
The progression of rod and cone degeneration in retinally degenerate (rd) mice ultimately results in a complete loss of photoreceptors and blindness. The inner retinal neurons survive and several recent studies using genetically targeted, light activated channels have made these neurons intrinsically light sensitive. We crossbred a transgenic mouse line(More)
Methylphenidate (MPH) is the most commonly used drug to treat attention deficit/hyperactivity disorder (ADHD) in children effectively and safely. In spite of its widespread application throughout one of the most plastic and sensitive phases of brain development, very little is known to date about its long-term effects on brain structure and function. Hence,(More)
Inhibitory interneurons comprise only about 20% of cortical neurons and thus constitute a clear minority compared to the vast number of excitatory projection neurons. They are, however, an influential minority with important roles in cortical maturation, function, and plasticity. In this paper, we will highlight the functional importance of cortical(More)
PURPOSE Little is known about neuronal changes during ageing in the visual system of mice which are increasingly being used as animal models for human visual disorders. METHODS AND RESULTS Measuring the optomotor response to moving gratings, visual acuity of C57BL/6-mice was 0.39 cycles/degree (cyc/deg) until 12 months of age and declined to 0.27 cyc/deg(More)
Does cortical plasticity depend on the temporal coherence of visual stimuli? We addressed this question by studying ocular dominance (OD) plasticity in mice that were stimulated by moving square wave gratings for 6 h/d during a period of monocular deprivation (MD). It turned out that 4 d of deprivation were sufficient to induce a saturated shift in(More)
BACKGROUND The primary visual cortex of mammals is characterised by a retinotopic representation of the visual field. It has therefore been speculated that the visual wulst, the avian homologue of the visual cortex, also contains such a retinotopic map. We examined this for the first time by optical imaging of intrinsic signals in zebra finches, a small(More)