Komla Domelevo

Learn More
We present a finite volume method based on the integration of the Laplace equation on both the cells of a primal almost arbitrary two-dimensional mesh and those of a dual mesh obtained by joining the centers of the cells of the primal mesh. The key ingredient is the definition of discrete gradient and divergence operators verifying a discrete Green formula.(More)
Abstract. We define discrete differential operators such as grad, div and curl, on general two-dimensional non-orthogonal meshes. These discrete operators verify discrete analogues of usual continuous theorems: discrete Green formulae, discrete Hodge decomposition of vector fields, vector curls have a vanishing divergence and gradients have a vanishing(More)
This paper deals with applications of the “Discrete-Duality Finite Volume” approach to a variety of elliptic problems. This is a new finite volume method, based on the derivation of discrete operators obeying a Discrete-Duality principle. An appropriate choice of the degrees of freedom allows one to use arbitrary meshes. We show that the method is naturally(More)
  • 1