Learn More
The bacterial flagellar filament is a helical propeller for bacterial locomotion. It is a helical assembly of a single protein, flagellin, and its tubular structure is formed by 11 protofilaments in two distinct conformations, L- and R-type, for supercoiling. The X-ray crystal structure of a flagellin fragment lacking about 100 terminal residues revealed(More)
BACKGROUND KaiA, KaiB and KaiC are cyanobacterial circadian clock proteins. KaiC contains two ATP/GTP-binding Walker's motif As, and mutations in these regions affect the clock oscillations. RESULTS ATP induced the hexamerization of KaiC. The Km value for the ATP for the hexamerization was 1.9 micro m. Triphosphate nucleotides bound to the two Walker's(More)
The calcium pump from sarcoplasmic reticulum (Ca2+-ATPase) is typical of the large family of P-type cation pumps. These couple ATP hydrolysis with cation transport, generating cation gradients across membranes. Ca2+-ATPase specifically maintains the low cytoplasmic calcium concentration of resting muscle by pumping calcium into the sarcoplasmic reticulum;(More)
The growth of the bacterial flagellar filament occurs at its distal end by self-assembly of flagellin transported from the cytoplasm through the narrow central channel. The cap at the growing end is essential for its growth, remaining stably attached while permitting the flagellin insertion. In order to understand the assembly mechanism, we used electron(More)
The location of the ATP-binding site of a P-type ion pump, Ca(2+)-ATPase from rabbit sarcoplasmic reticulum, was examined by cryoelectron microscopy. A nonhydrolyzable analog of ATP, beta, gamma-bidentate chromium (III) complex of ATP (CrATP), was used to stabilize the enzyme in the Ca(2+)-occluded state. Tubular crystals were then induced by vanadate in(More)
The FliF ring is the base for self-assembly of the bacterial flagellum and the FliF/FliG ring complex is the core of the rotor of the flagellar motor. We report the structures of these two ring complexes obtained by electron cryomicroscopy and single-particle image analysis at 22A and 25A resolution, respectively. Direct comparison of these structures with(More)
A set of programs equipped with graphical user interface has been developed for processing individual images in early stages of the three-dimensional helical image reconstruction procedure. These programs can be used for initial screening of suitable image area, straightening the object image, determination of box parameters including the repeat distance,(More)
The CRISPR-Cas system is a prokaryotic host defense system against genetic elements. The Type III-B CRISPR-Cas system of the bacterium Thermus thermophilus, the TtCmr complex, is composed of six different protein subunits (Cmr1-6) and one crRNA with a stoichiometry of Cmr112131445361:crRNA1. The TtCmr complex copurifies with crRNA species of 40 and 46 nt,(More)
The bacterial flagellar filament is a helical propeller rotated by the flagellar motor for bacterial locomotion. The filament is a supercoiled assembly of a single protein, flagellin, and is formed by 11 protofilaments. For bacterial taxis, the reversal of motor rotation switches the supercoil between left- and right-handed, both of which arise from(More)
The cap at the growing end of the bacterial flagellum is essential for its growth, remaining stably attached while permitting the insertion of flagellin transported from the cytoplasm through the narrow central channel. We analyzed the structure of the isolated cap in its frozen hydrated state by electron cryomicroscopy. The 3D density map now shows(More)