Koji Yonekura

Learn More
The bacterial flagellar filament is a helical propeller for bacterial locomotion. It is a helical assembly of a single protein, flagellin, and its tubular structure is formed by 11 protofilaments in two distinct conformations, L- and R-type, for supercoiling. The X-ray crystal structure of a flagellin fragment lacking about 100 terminal residues revealed(More)
BACKGROUND KaiA, KaiB and KaiC are cyanobacterial circadian clock proteins. KaiC contains two ATP/GTP-binding Walker's motif As, and mutations in these regions affect the clock oscillations. RESULTS ATP induced the hexamerization of KaiC. The Km value for the ATP for the hexamerization was 1.9 micro m. Triphosphate nucleotides bound to the two Walker's(More)
The calcium pump from sarcoplasmic reticulum (Ca2+-ATPase) is typical of the large family of P-type cation pumps. These couple ATP hydrolysis with cation transport, generating cation gradients across membranes. Ca2+-ATPase specifically maintains the low cytoplasmic calcium concentration of resting muscle by pumping calcium into the sarcoplasmic reticulum;(More)
The CRISPR-Cas system is a prokaryotic host defense system against genetic elements. The Type III-B CRISPR-Cas system of the bacterium Thermus thermophilus, the TtCmr complex, is composed of six different protein subunits (Cmr1-6) and one crRNA with a stoichiometry of Cmr112131445361:crRNA1. The TtCmr complex copurifies with crRNA species of 40 and 46 nt,(More)
Efficiency of interspecies prion transmission decreases as the primary structures of the infectious proteins diverge. Yet, a single prion protein can misfold into multiple infectious conformations, and such differences in "strain conformation" also alter infection specificity. Here, we explored the relationship between prion strains and species barriers by(More)
The growth of the bacterial flagellar filament occurs at its distal end by self-assembly of flagellin transported from the cytoplasm through the narrow central channel. The cap at the growing end is essential for its growth, remaining stably attached while permitting the flagellin insertion. In order to understand the assembly mechanism, we used electron(More)
The supercoiled forms of the flagellar filaments are thought to be constructed from a mixture of two distinct subunit conformations arranged in a regular manner. We analyzed the structure of one of the two straight flagellar filaments, each of which is built up with all its subunits in one of the two conformations. The filament we studied was isolated from(More)
The bacterial flagellar filament is a helical propeller rotated by the flagellar motor for bacterial locomotion. The filament is a supercoiled assembly of a single protein, flagellin, and is formed by 11 protofilaments. For bacterial taxis, the reversal of motor rotation switches the supercoil between left- and right-handed, both of which arise from(More)
The FliF ring is the base for self-assembly of the bacterial flagellum and the FliF/FliG ring complex is the core of the rotor of the flagellar motor. We report the structures of these two ring complexes obtained by electron cryomicroscopy and single-particle image analysis at 22A and 25A resolution, respectively. Direct comparison of these structures with(More)
At the core of Saccharomyces cerevisiae telomeres is an array of tandem telomeric DNA repeats bound site-specifically by multiple Rap1 molecules. There, Rap1 orchestrates the binding of additional telomere-associated proteins and negatively regulates both telomere fusion and length homeostasis. Using electron microscopy, viscosity, and light scattering(More)