Learn More
Bilateral periventricular nodular heterotopia (BPNH) is a neuronal migration disorder that is characterized by subependymal nodules of gray matter. Recently, a causative gene for BPNH, filamin 1, has been identified, and possible roles of the translated protein in cell migration and blood vessel development have been proposed. We report here the(More)
D-Amino acid oxidase (DAO) is a peroxisomal flavoenzyme that catalyzes oxidative deamination of a wide range of D-amino acids. Among the possible substrates of DAO in vivo, D-serine is proposed to be a neuromodulator of the N-methyl-D-aspartate (NMDA) type glutamate receptor. The gene for DAO was reported to be associated with schizophrenia. Since DAO is(More)
The cell type and localization of vascular endothelial growth factor (VEGF)-producing cells in human radiation necrosis (RN) are investigated from a histopathological and immunohistochemical standpoint using clinical specimens. Eighteen surgical specimens of symptomatic RN in the brain were retrospectively reviewed. These cases included different original(More)
The cytotoxic effects of alkylating agents are strongly attenuated by cellular DNA repair processes, necessitating a clear understanding of the repair mechanisms. Simple methylating agents form adducts at N- and O-atoms. N-methylations are removed by base excision repair, AlkB homologues, or nucleotide excision repair (NER). O(6)-methylguanine (MeG), which(More)
We retrospectively review outcomes of applying boron neutron capture therapy (BNCT) to unresectable advanced or recurrent head and neck cancers. Patients who were treated with BNCT for either local recurrent or newly diagnosed unresectable head or neck cancers between December 2001 and September 2007 were included. Clinicopathological characteristics and(More)
Superb biological effectiveness and dose conformity represent a rationale for heavy-ion therapy, which has thus far achieved good cancer controllability while sparing critical normal organs. Immediately after irradiation, heavy ions produce dense ionization along their trajectories, cause irreparable clustered DNA damage, and alter cellular ultrastructure.(More)
Here we demonstrate that differentiation between glioblastoma (GB) tumor progression (TP) and radiation necrosis (RN) can be achieved with fluoride-labeled boronoalanine positron emission tomography (F-BPA-PET). F-BPA-PET images were obtained from histologically verified 38 GB, 8 complete RN, and 5 RN cases with partial residual tumors. The lesion/normal(More)
We have applied boron neutron capture therapy (BNCT) to malignant brain tumors. Here we evaluated the survival benefit of BNCT for recurrent malignant glioma (MG). Since 2002, we have treated 22 cases of recurrent MG with BNCT. Survival time was analyzed with special reference to recursive partitioning analysis (RPA) classification, by Carson et al. (J Clin(More)
Radiation necrosis (RN) after intensive radiation therapy is a serious problem. Using human RN specimens, we recently proved that leaky angiogenesis is a major cause of brain edema in RN. In the present study, we investigated the same specimens to speculate on inflammation's effect on the pathophysiology of RN. Surgical specimens of symptomatic RN in the(More)
OBJECT To improve the effectiveness of boron neutron capture therapy (BNCT) for malignant gliomas, the authors used epithermal rather than thermal neutrons for deep penetration and two boron compounds-sodium borocaptate (BSH) and boronophenylalanine (BPA)-with different accumulation mechanisms to increase the boron level in tumors while compensating for(More)