Learn More
Osteoblasts and osteoclasts maintain bone volume. Acidosis affects the function of these cells including mineral metabolism. We examined the effect of acidosis on the expression of transcription factors and mineralization in human osteoblasts in vitro. Human osteoblasts (SaM-1 cells) derived from the ulnar periosteum were cultured with α-MEM containing 50(More)
The present study was designed to elucidate the mode of action of isoproterenol (Isp; adrenergic beta-agonist) and to characterize the effect of the calcitonin gene-related peptide (CGRP; sensory neuropeptide) on osteoclast formation induced by Isp in a mouse bone marrow culture system. Treatment of mouse bone marrow cells with Isp generated(More)
Intracellular Ca(2+) mobilization plays important roles in cell survival, proliferation, and differentiation of osteoblasts. In this study, we identified a novel type of Ca(2+)-activated K(+) channel in human osteoblasts and investigated its physiological roles. Using RT-PCR methods and single-channel analysis in the patch-clamp technique, we found that BK(More)
  • 1