Koichiro Nishino

Learn More
Indeed human induced pluripotent stem cells (hiPSCs) are considered to be powerful tools in regenerative medicine. To enable the use of hiPSCs in the field of regenerative medicine, it is necessary to understand the mechanisms of reprogramming during the transformation of somatic cells into hiPSCs. Genome-wide epigenetic modification constitutes a critical(More)
BACKGROUND DNA methylation is involved in many gene functions such as gene-silencing, X-inactivation, imprinting and stability of the gene. We recently found that some CpG islands had a tissue-dependent and differentially methylated region (T-DMR) in normal tissues, raising the possibility that there may be more CpG islands capable of differential(More)
BACKGROUND Human induced pluripotent stem (iPS) cells are currently used as powerful resources in regenerative medicine. During very early developmental stages, DNA methylation decreases to an overall low level at the blastocyst stage, from which embryonic stem cells are derived. Therefore, pluripotent stem cells, such as ES and iPS cells, are considered to(More)
The objective of this study was to characterize the genome-wide DNA methylation profiles of isolated endometrial stromal cells obtained from eutopic endometria with (euESCa) and without endometriosis (euESCb) and ovarian endometrial cysts (choESC). Three samples were analyzed in each group. The infinium methylation array identified more hypermethylated and(More)
hiPSCs are generated through epigenetic reprogramming of somatic tissue. Genomic imprinting is an epigenetic phenomenon through which monoallelic gene expression is regulated in a parent-of-origin-specific manner. Reprogramming relies on the successful erasure of marks of differentiation while maintaining those required for genomic imprinting. Loss of(More)
The Sry (sex determining region on Y chromosome) gene is a master gene for sex determination. We previously reported that the Sry gene has tissue-dependent and differentially methylated regions (T-DMRs) by analyzing the DNA methylation states at CpG sites in the promoter regions. In this study, we found unique non-CpG methylation at the internal cytosine in(More)
BACKGROUND Human iPS cells (hiPSCs) have attracted considerable attention for applications to drug screening and analyses of disease mechanisms, and even as next generation materials for regenerative medicine. Genetic reprogramming of human somatic cells to a pluripotent state was first achieved by the ectopic expression of four factors (Sox2, Oct4, Klf4(More)
Transgenes introduced into cancer cell lines serve as powerful tools for identification of genes involved in cancer. However, the random nature of genomic integration site of a transgene highly influences the fidelity, reliability and level of its expression. In order to alleviate this bottleneck, we characterized the potential utility of a novel PhiC31(More)
Induced pluripotent stem (iPS) cells, obtained from reprogramming somatic cells by ectopic expression of a defined set of transcription factors or chemicals, are expected to be used as differentiated cells for drug screening or evaluations of drug toxicity and cell replacement therapies. As pluripotent stem cells, iPS cells are similar to embryonic stem(More)