Learn More
Mammary tumors are the most common tumor type in both human and canine females. In women, carriers of mutations in BRCA2, a tumor suppressor gene product, have a higher risk of breast cancer. Canine BRCA2 has also been suggested to have a relationship with mammary tumors. However, clearly deleterious BRCA2 mutations have not been identified in any canine(More)
Human fibrinogen is a metal ion-binding protein, but its mechanism of binding with iron and heme has not been elucidated in detail. In this study, human fibrinogen was immobilized on CNBr-activated Sepharose 4B beads. The fibrinogen beads bound hemin (iron–protoporphyrin IX: PPIX) as well as iron ion released from ferrous ammonium sulfate (FAS) more(More)
Bovine milk α-casein has been identified as an iron- and heme-binding protein. However, the physiological role of its iron-binding remains to be elucidated in more detail. α-Casein was immobilized on CNBr-activated Sepharose 4B beads, and the α-casein agarose beads efficiently bound hemin as well as ferrous ammonium sulfate (Fe2+) as compared with control(More)
Both human and horse fibrinogen are heme-binding proteins, and horse fibrinogen also exhibits heme-mediated ferritin binding. This study found that bovine and human fibrinogen are heme-mediated ferritin-binding proteins and demonstrated direct binding of bovine ferritin to protoporphyrin (PPIX) and its derivatives or to Zn ions. Binding of bovine and human(More)
BACKGROUND Horse fibrinogen has been identified as a plasma specific ferritin-binding protein. There are two ways in the binding of ferritin-binding protein with ferritin: one is direct binding and the other is indirect binding which is heme-mediated. The aim of this study was to analyze the binding between horse fibrinogen and ferritin. FINDINGS Although(More)
Anti-ferritin autoantibodies are found in many animals. Human ferritin-binding proteins (FBPs) were partially purified from human serum by ion-exchange chromatography and immobilized metal affinity chromatography with Zn 2+. Crude FBPs were immunocoprecipitated with canine liver ferritin followed by the addition of anti-ferritin antibodies. Immunoglobulins(More)
In veterinary medicine, hyperferritinemia is often observed in dogs with various diseases (e.g., histiocytic sarcoma and immune-mediated hemolytic anemia) without evidence of iron overload. The mechanism underlying hyperferritinemia development is not well understood. Anemia caused by inflammation is termed as anemia of chronic disease (ACD), and(More)
BACKGROUND Iron-storage protein, ferritin plays a central role in iron metabolism. Ferritin has dual function to store iron and segregate iron for protection of iron-catalyzed reactive oxygen species. Tissue ferritin is composed of two kinds of subunits (H: heavy chain or heart-type subunit; L: light chain or liver-type subunit). Ferritin gene expression is(More)
Serum ferritin levels are relatively low (<1 µg/ml) and serum ferritin generally disappears rapidly from the circulation (t 1/2 < 10 min). There are various mammalian ferritin-binding proteins (FBPs) in the blood. Ferritin is cleared by direct uptake by ferritin receptors and by indirect receptor-mediated uptake of FBP complexed with ferritin. Mammalian(More)
In mammal circulation, ferritin-binding proteins (FBPs) are thought to be involved in clearance of circulating ferritin after complex formation with it through receptor-mediated uptake. However, there is no report on fetal FBP in fetal circulation. Although iron concentrations of fetal horse plasma were higher than those of adult horse plasma, plasma(More)